Logistic Regression for Osun State, Nigeria Water Point

Understanding the implementation of Spatial Logistic Regression on real-life dataset.

geospatial
sf
spdep
tmap
clustering
Author

Ong Zhi Rong Jordan

Published

December 17, 2022

Overview

The Data

Getting Started

Before we get started, it is important for us to install the necessary R packages into R and launch these R packages into R environment.

The code chunks below installs and launches these R packages into R environment.

Show the code
pacman::p_load(sf, tidyverse, funModeling, blorr, corrplot, ggpubr, spdep, GWmodel, tmap, skimr, caret)

Geospatial Data Wrangling

Importing RDS data

In this exercise, we will focus on the Water Point at Osun state. The RDS file is provided as part of the In-Class Exercise.

Show the code
Osun_wp_sf <- readRDS ("data/rds/Osun_wp_sf.rds")
Osun <- readRDS ("data/rds/Osun.rds")

Exploratory Data Analysis (EDA)

In the section, you will learn how to use statistical graphics functions of funModeling package to perform EDA.

EDA using statistical graphics

From the EDA, we will be able to understand the distribution of our independent variable.

Show the code
Osun_wp_sf %>%
  freq(input = "status")

  status frequency percentage cumulative_perc
1   TRUE      2642       55.5            55.5
2  FALSE      2118       44.5           100.0

Using tmap, we are able to plot the distribution of Functional and Non-Functional water point within the state.

Show the code
tm_shape(Osun) +
  tm_polygons(alpha = 0.4) +
  tm_shape(Osun_wp_sf) +
  tm_dots(col = "status",
          alpha = 0.6) +
  tm_view(set.zoom.limits = c(9,12))

The skim() function from the skimr package allow us to explore the columns with a summary of missing variables.

Show the code
Osun_wp_sf %>%
  skim()
Data summary
Name Piped data
Number of rows 4760
Number of columns 75
_______________________
Column type frequency:
character 47
logical 5
numeric 23
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
source 0 1.00 5 44 0 2 0
report_date 0 1.00 22 22 0 42 0
status_id 0 1.00 2 7 0 3 0
water_source_clean 0 1.00 8 22 0 3 0
water_source_category 0 1.00 4 6 0 2 0
water_tech_clean 24 0.99 9 23 0 3 0
water_tech_category 24 0.99 9 15 0 2 0
facility_type 0 1.00 8 8 0 1 0
clean_country_name 0 1.00 7 7 0 1 0
clean_adm1 0 1.00 3 5 0 5 0
clean_adm2 0 1.00 3 14 0 35 0
clean_adm3 4760 0.00 NA NA 0 0 0
clean_adm4 4760 0.00 NA NA 0 0 0
installer 4760 0.00 NA NA 0 0 0
management_clean 1573 0.67 5 37 0 7 0
status_clean 0 1.00 9 32 0 7 0
pay 0 1.00 2 39 0 7 0
fecal_coliform_presence 4760 0.00 NA NA 0 0 0
subjective_quality 0 1.00 18 20 0 4 0
activity_id 4757 0.00 36 36 0 3 0
scheme_id 4760 0.00 NA NA 0 0 0
wpdx_id 0 1.00 12 12 0 4760 0
notes 0 1.00 2 96 0 3502 0
orig_lnk 4757 0.00 84 84 0 1 0
photo_lnk 41 0.99 84 84 0 4719 0
country_id 0 1.00 2 2 0 1 0
data_lnk 0 1.00 79 96 0 2 0
water_point_history 0 1.00 142 834 0 4750 0
clean_country_id 0 1.00 3 3 0 1 0
country_name 0 1.00 7 7 0 1 0
water_source 0 1.00 8 30 0 4 0
water_tech 0 1.00 5 37 0 20 0
adm2 0 1.00 3 14 0 33 0
adm3 4760 0.00 NA NA 0 0 0
management 1573 0.67 5 47 0 7 0
adm1 0 1.00 4 5 0 4 0
New Georeferenced Column 0 1.00 16 35 0 4760 0
lat_lon_deg 0 1.00 13 32 0 4760 0
public_data_source 0 1.00 84 102 0 2 0
converted 0 1.00 53 53 0 1 0
created_timestamp 0 1.00 22 22 0 2 0
updated_timestamp 0 1.00 22 22 0 2 0
Geometry 0 1.00 33 37 0 4760 0
ADM2_EN 0 1.00 3 14 0 30 0
ADM2_PCODE 0 1.00 8 8 0 30 0
ADM1_EN 0 1.00 4 4 0 1 0
ADM1_PCODE 0 1.00 5 5 0 1 0

Variable type: logical

skim_variable n_missing complete_rate mean count
rehab_year 4760 0 NaN :
rehabilitator 4760 0 NaN :
is_urban 0 1 0.39 FAL: 2884, TRU: 1876
latest_record 0 1 1.00 TRU: 4760
status 0 1 0.56 TRU: 2642, FAL: 2118

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
row_id 0 1.00 68550.48 10216.94 49601.00 66874.75 68244.50 69562.25 471319.00 ▇▁▁▁▁
lat_deg 0 1.00 7.68 0.22 7.06 7.51 7.71 7.88 8.06 ▁▂▇▇▇
lon_deg 0 1.00 4.54 0.21 4.08 4.36 4.56 4.71 5.06 ▃▆▇▇▂
install_year 1144 0.76 2008.63 6.04 1917.00 2006.00 2010.00 2013.00 2015.00 ▁▁▁▁▇
fecal_coliform_value 4760 0.00 NaN NA NA NA NA NA NA
distance_to_primary_road 0 1.00 5021.53 5648.34 0.01 719.36 2972.78 7314.73 26909.86 ▇▂▁▁▁
distance_to_secondary_road 0 1.00 3750.47 3938.63 0.15 460.90 2554.25 5791.94 19559.48 ▇▃▁▁▁
distance_to_tertiary_road 0 1.00 1259.28 1680.04 0.02 121.25 521.77 1834.42 10966.27 ▇▂▁▁▁
distance_to_city 0 1.00 16663.99 10960.82 53.05 7930.75 15030.41 24255.75 47934.34 ▇▇▆▃▁
distance_to_town 0 1.00 16726.59 12452.65 30.00 6876.92 12204.53 27739.46 44020.64 ▇▅▃▃▂
rehab_priority 2654 0.44 489.33 1658.81 0.00 7.00 91.50 376.25 29697.00 ▇▁▁▁▁
water_point_population 4 1.00 513.58 1458.92 0.00 14.00 119.00 433.25 29697.00 ▇▁▁▁▁
local_population_1km 4 1.00 2727.16 4189.46 0.00 176.00 1032.00 3717.00 36118.00 ▇▁▁▁▁
crucialness_score 798 0.83 0.26 0.28 0.00 0.07 0.15 0.35 1.00 ▇▃▁▁▁
pressure_score 798 0.83 1.46 4.16 0.00 0.12 0.41 1.24 93.69 ▇▁▁▁▁
usage_capacity 0 1.00 560.74 338.46 300.00 300.00 300.00 1000.00 1000.00 ▇▁▁▁▅
days_since_report 0 1.00 2692.69 41.92 1483.00 2688.00 2693.00 2700.00 4645.00 ▁▇▁▁▁
staleness_score 0 1.00 42.80 0.58 23.13 42.70 42.79 42.86 62.66 ▁▁▇▁▁
location_id 0 1.00 235865.49 6657.60 23741.00 230638.75 236199.50 240061.25 267454.00 ▁▁▁▁▇
cluster_size 0 1.00 1.05 0.25 1.00 1.00 1.00 1.00 4.00 ▇▁▁▁▁
lat_deg_original 4760 0.00 NaN NA NA NA NA NA NA
lon_deg_original 4760 0.00 NaN NA NA NA NA NA NA
count 0 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 ▁▁▇▁▁

Next, we will filter the dependent variable to remove any NA rows. We will also change the class of the usage_capacity from numeric to factor.

Show the code
Osun_wp_sf_clean <- Osun_wp_sf %>%
  filter_at (vars(status,
                  distance_to_city,
                  distance_to_primary_road,
                  distance_to_secondary_road,
                  distance_to_tertiary_road,
                  distance_to_town,
                  water_point_population,
                  local_population_1km,
                  usage_capacity,
                  is_urban,
                  water_source_clean),
             all_vars(!is.na(.))) %>%
  mutate(usage_capacity = as.factor(usage_capacity))

Correlation Matrix

Before performing the correlation matrix, we will filter the required columns and dropping the geometry column.

Show the code
Osun_wp<- Osun_wp_sf_clean %>%
  select(c(7,35:39,42:43, 46:47, 57)) %>%
  st_drop_geometry()

We will use the corrplot.mixed() from the corrplot package to examine the correlation between the variables.

Show the code
cluster_vars.cor = cor(
  Osun_wp[,2:7])

corrplot.mixed(cluster_vars.cor,
               lower = "ellipse", 
               upper = "number",
               tl.pos = "lt",
               diag = "l",
               tl.col = "black"
)

Logistic Regression

We will use the glm() function to perform logistic regression on our variables.

Show the code
model <- glm (status ~ distance_to_primary_road +
                distance_to_city +
                distance_to_secondary_road +
                distance_to_tertiary_road +
                distance_to_town +
                water_point_population +
                local_population_1km +
                usage_capacity +
                is_urban +
                water_source_clean,
              data = Osun_wp_sf_clean,
              family = binomial(link = "logit"))

Visualising Logistic Regression Output

Instead of using the base R report, we will use the blr_regress() function from the blorr package.

Show the code
blr_regress(model)
                             Model Overview                              
------------------------------------------------------------------------
Data Set    Resp Var    Obs.    Df. Model    Df. Residual    Convergence 
------------------------------------------------------------------------
  data       status     4756      4755           4744           TRUE     
------------------------------------------------------------------------

                    Response Summary                     
--------------------------------------------------------
Outcome        Frequency        Outcome        Frequency 
--------------------------------------------------------
   0             2114              1             2642    
--------------------------------------------------------

                                 Maximum Likelihood Estimates                                   
-----------------------------------------------------------------------------------------------
               Parameter                    DF    Estimate    Std. Error    z value     Pr(>|z|) 
-----------------------------------------------------------------------------------------------
              (Intercept)                   1      0.3887        0.1124      3.4588       5e-04 
        distance_to_primary_road            1      0.0000        0.0000     -0.7153      0.4744 
            distance_to_city                1      0.0000        0.0000     -4.7574      0.0000 
       distance_to_secondary_road           1      0.0000        0.0000     -0.5530      0.5802 
       distance_to_tertiary_road            1      1e-04         0.0000      4.6708      0.0000 
            distance_to_town                1      0.0000        0.0000     -4.9170      0.0000 
         water_point_population             1      -5e-04        0.0000    -11.3686      0.0000 
          local_population_1km              1      3e-04         0.0000     19.2953      0.0000 
           usage_capacity1000               1     -0.6230        0.0697     -8.9366      0.0000 
              is_urbanTRUE                  1     -0.2971        0.0819     -3.6294       3e-04 
water_source_cleanProtected Shallow Well    1      0.5040        0.0857      5.8783      0.0000 
   water_source_cleanProtected Spring       1      1.2882        0.4388      2.9359      0.0033 
-----------------------------------------------------------------------------------------------

 Association of Predicted Probabilities and Observed Responses  
---------------------------------------------------------------
% Concordant          0.7347          Somers' D        0.4693   
% Discordant          0.2653          Gamma            0.4693   
% Tied                0.0000          Tau-a            0.2318   
Pairs                5585188          c                0.7347   
---------------------------------------------------------------

From the output, we can identify that distance_to_primary_road and distance_to_secondary_road obtained p-value > 0.05 and therefore can be considered not statistically significant. We will then remove these variable for future analysis.

Show the code
model_clean <- glm (status ~ distance_to_city +
                distance_to_tertiary_road +
                distance_to_town +
                water_point_population +
                local_population_1km +
                usage_capacity +
                is_urban +
                water_source_clean,
              data = Osun_wp_sf_clean,
              family = binomial(link = "logit"))
Show the code
blr_regress(model_clean)
                             Model Overview                              
------------------------------------------------------------------------
Data Set    Resp Var    Obs.    Df. Model    Df. Residual    Convergence 
------------------------------------------------------------------------
  data       status     4756      4755           4746           TRUE     
------------------------------------------------------------------------

                    Response Summary                     
--------------------------------------------------------
Outcome        Frequency        Outcome        Frequency 
--------------------------------------------------------
   0             2114              1             2642    
--------------------------------------------------------

                                 Maximum Likelihood Estimates                                   
-----------------------------------------------------------------------------------------------
               Parameter                    DF    Estimate    Std. Error    z value     Pr(>|z|) 
-----------------------------------------------------------------------------------------------
              (Intercept)                   1      0.3540        0.1055      3.3541       8e-04 
            distance_to_city                1      0.0000        0.0000     -5.2022      0.0000 
       distance_to_tertiary_road            1      1e-04         0.0000      4.9096      0.0000 
            distance_to_town                1      0.0000        0.0000     -5.4660      0.0000 
         water_point_population             1      -5e-04        0.0000    -11.3902      0.0000 
          local_population_1km              1      3e-04         0.0000     19.4069      0.0000 
           usage_capacity1000               1     -0.6206        0.0697     -8.9081      0.0000 
              is_urbanTRUE                  1     -0.2667        0.0747     -3.5690       4e-04 
water_source_cleanProtected Shallow Well    1      0.4947        0.0850      5.8228      0.0000 
   water_source_cleanProtected Spring       1      1.2790        0.4384      2.9174      0.0035 
-----------------------------------------------------------------------------------------------

 Association of Predicted Probabilities and Observed Responses  
---------------------------------------------------------------
% Concordant          0.7349          Somers' D        0.4697   
% Discordant          0.2651          Gamma            0.4697   
% Tied                0.0000          Tau-a            0.2320   
Pairs                5585188          c                0.7349   
---------------------------------------------------------------
Show the code
blr_confusion_matrix(model_clean, cutoff = 0.5)
Confusion Matrix and Statistics 

          Reference
Prediction FALSE TRUE
         0  1300  743
         1   814 1899

                Accuracy : 0.6726 
     No Information Rate : 0.4445 

                   Kappa : 0.3348 

McNemars's Test P-Value  : 0.0761 

             Sensitivity : 0.7188 
             Specificity : 0.6149 
          Pos Pred Value : 0.7000 
          Neg Pred Value : 0.6363 
              Prevalence : 0.5555 
          Detection Rate : 0.3993 
    Detection Prevalence : 0.5704 
       Balanced Accuracy : 0.6669 
               Precision : 0.7000 
                  Recall : 0.7188 

        'Positive' Class : 1

Converting to Spatial Class

Show the code
Osun_wp_sp <- Osun_wp_sf_clean %>%
  select (c(status,
                  distance_to_city,
                  distance_to_tertiary_road,
                  distance_to_town,
                  water_point_population,
                  local_population_1km,
                  usage_capacity,
                  is_urban,
                  water_source_clean)) %>%
  as_Spatial()

Osun_wp_sp
class       : SpatialPointsDataFrame 
features    : 4756 
extent      : 182502.4, 290751, 340054.1, 450905.3  (xmin, xmax, ymin, ymax)
crs         : +proj=tmerc +lat_0=4 +lon_0=8.5 +k=0.99975 +x_0=670553.98 +y_0=0 +a=6378249.145 +rf=293.465 +towgs84=-92,-93,122,0,0,0,0 +units=m +no_defs 
variables   : 9
names       : status, distance_to_city, distance_to_tertiary_road, distance_to_town, water_point_population, local_population_1km, usage_capacity, is_urban, water_source_clean 
min values  :      0, 53.0461399623541,         0.017815121653488, 30.0019777713073,                      0,                    0,           1000,        0,           Borehole 
max values  :      1,  47934.343603562,          10966.2705628969, 44020.6393368124,                  29697,                36118,            300,        1,   Protected Spring 

Calculating the optimal fixed bandwidth

Using the function bw.ggwr(), we will derive the optimal fixed bandwidth to be used for the spatial logistic regression.

Show the code
bw.fixed <- bw.ggwr (status ~ distance_to_city +
                distance_to_tertiary_road +
                distance_to_town +
                water_point_population +
                local_population_1km +
                usage_capacity +
                is_urban +
                water_source_clean,
              data = Osun_wp_sp,
              family = "binomial",
              approach = "AIC",
              kernel = "gaussian",
              adaptive = FALSE,
              longlat = FALSE)
Take a cup of tea and have a break, it will take a few minutes.
          -----A kind suggestion from GWmodel development group
 Iteration    Log-Likelihood:(With bandwidth:  95768.67 )
=========================
       0        -2890 
       1        -2837 
       2        -2830 
       3        -2829 
       4        -2829 
       5        -2829 
Fixed bandwidth: 95768.67 AICc value: 5681.18 
 Iteration    Log-Likelihood:(With bandwidth:  59200.13 )
=========================
       0        -2878 
       1        -2820 
       2        -2812 
       3        -2810 
       4        -2810 
       5        -2810 
Fixed bandwidth: 59200.13 AICc value: 5645.901 
 Iteration    Log-Likelihood:(With bandwidth:  36599.53 )
=========================
       0        -2854 
       1        -2790 
       2        -2777 
       3        -2774 
       4        -2774 
       5        -2774 
       6        -2774 
Fixed bandwidth: 36599.53 AICc value: 5585.354 
 Iteration    Log-Likelihood:(With bandwidth:  22631.59 )
=========================
       0        -2810 
       1        -2732 
       2        -2711 
       3        -2707 
       4        -2707 
       5        -2707 
       6        -2707 
Fixed bandwidth: 22631.59 AICc value: 5481.877 
 Iteration    Log-Likelihood:(With bandwidth:  13998.93 )
=========================
       0        -2732 
       1        -2635 
       2        -2604 
       3        -2597 
       4        -2596 
       5        -2596 
       6        -2596 
Fixed bandwidth: 13998.93 AICc value: 5333.718 
 Iteration    Log-Likelihood:(With bandwidth:  8663.649 )
=========================
       0        -2624 
       1        -2502 
       2        -2459 
       3        -2447 
       4        -2446 
       5        -2446 
       6        -2446 
       7        -2446 
Fixed bandwidth: 8663.649 AICc value: 5178.493 
 Iteration    Log-Likelihood:(With bandwidth:  5366.266 )
=========================
       0        -2478 
       1        -2319 
       2        -2250 
       3        -2225 
       4        -2219 
       5        -2219 
       6        -2220 
       7        -2220 
       8        -2220 
       9        -2220 
Fixed bandwidth: 5366.266 AICc value: 5022.016 
 Iteration    Log-Likelihood:(With bandwidth:  3328.371 )
=========================
       0        -2222 
       1        -2002 
       2        -1894 
       3        -1838 
       4        -1818 
       5        -1814 
       6        -1814 
Fixed bandwidth: 3328.371 AICc value: 4827.587 
 Iteration    Log-Likelihood:(With bandwidth:  2068.882 )
=========================
       0        -1837 
       1        -1528 
       2        -1357 
       3        -1261 
       4        -1222 
       5        -1222 
Fixed bandwidth: 2068.882 AICc value: 4772.046 
 Iteration    Log-Likelihood:(With bandwidth:  1290.476 )
=========================
       0        -1403 
       1        -1016 
       2       -807.3 
       3       -680.2 
       4       -680.2 
Fixed bandwidth: 1290.476 AICc value: 5809.716 
 Iteration    Log-Likelihood:(With bandwidth:  2549.964 )
=========================
       0        -2019 
       1        -1753 
       2        -1614 
       3        -1538 
       4        -1506 
       5        -1506 
Fixed bandwidth: 2549.964 AICc value: 4764.056 
 Iteration    Log-Likelihood:(With bandwidth:  2847.289 )
=========================
       0        -2108 
       1        -1862 
       2        -1736 
       3        -1670 
       4        -1644 
       5        -1644 
Fixed bandwidth: 2847.289 AICc value: 4791.834 
 Iteration    Log-Likelihood:(With bandwidth:  2366.207 )
=========================
       0        -1955 
       1        -1675 
       2        -1525 
       3        -1441 
       4        -1407 
       5        -1407 
Fixed bandwidth: 2366.207 AICc value: 4755.524 
 Iteration    Log-Likelihood:(With bandwidth:  2252.639 )
=========================
       0        -1913 
       1        -1623 
       2        -1465 
       3        -1376 
       4        -1341 
       5        -1341 
Fixed bandwidth: 2252.639 AICc value: 4759.188 
 Iteration    Log-Likelihood:(With bandwidth:  2436.396 )
=========================
       0        -1980 
       1        -1706 
       2        -1560 
       3        -1479 
       4        -1446 
       5        -1446 
Fixed bandwidth: 2436.396 AICc value: 4756.675 
 Iteration    Log-Likelihood:(With bandwidth:  2322.828 )
=========================
       0        -1940 
       1        -1656 
       2        -1503 
       3        -1417 
       4        -1382 
       5        -1382 
Fixed bandwidth: 2322.828 AICc value: 4756.471 
 Iteration    Log-Likelihood:(With bandwidth:  2393.017 )
=========================
       0        -1965 
       1        -1687 
       2        -1539 
       3        -1456 
       4        -1422 
       5        -1422 
Fixed bandwidth: 2393.017 AICc value: 4755.57 
 Iteration    Log-Likelihood:(With bandwidth:  2349.638 )
=========================
       0        -1949 
       1        -1668 
       2        -1517 
       3        -1432 
       4        -1398 
       5        -1398 
Fixed bandwidth: 2349.638 AICc value: 4755.753 
 Iteration    Log-Likelihood:(With bandwidth:  2376.448 )
=========================
       0        -1959 
       1        -1680 
       2        -1530 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2376.448 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2382.777 )
=========================
       0        -1961 
       1        -1683 
       2        -1534 
       3        -1450 
       4        -1416 
       5        -1416 
Fixed bandwidth: 2382.777 AICc value: 4755.491 
 Iteration    Log-Likelihood:(With bandwidth:  2372.536 )
=========================
       0        -1958 
       1        -1678 
       2        -1528 
       3        -1445 
       4        -1411 
       5        -1411 
Fixed bandwidth: 2372.536 AICc value: 4755.488 
 Iteration    Log-Likelihood:(With bandwidth:  2378.865 )
=========================
       0        -1960 
       1        -1681 
       2        -1532 
       3        -1448 
       4        -1414 
       5        -1414 
Fixed bandwidth: 2378.865 AICc value: 4755.481 
 Iteration    Log-Likelihood:(With bandwidth:  2374.954 )
=========================
       0        -1959 
       1        -1679 
       2        -1530 
       3        -1446 
       4        -1412 
       5        -1412 
Fixed bandwidth: 2374.954 AICc value: 4755.482 
 Iteration    Log-Likelihood:(With bandwidth:  2377.371 )
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2377.371 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2377.942 )
=========================
       0        -1960 
       1        -1680 
       2        -1531 
       3        -1448 
       4        -1414 
       5        -1414 
Fixed bandwidth: 2377.942 AICc value: 4755.48 
 Iteration    Log-Likelihood:(With bandwidth:  2377.018 )
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Fixed bandwidth: 2377.018 AICc value: 4755.48 
Show the code
bw.fixed
[1] 2377.371
Show the code
gwlr.fixed <- ggwr.basic (status ~ distance_to_city +
                distance_to_tertiary_road +
                distance_to_town +
                water_point_population +
                local_population_1km +
                usage_capacity +
                is_urban +
                water_source_clean,
              data = Osun_wp_sp,
              bw = bw.fixed,
              family = "binomial",
              kernel = "gaussian",
              adaptive = FALSE,
              longlat = FALSE)
 Iteration    Log-Likelihood
=========================
       0        -1959 
       1        -1680 
       2        -1531 
       3        -1447 
       4        -1413 
       5        -1413 
Show the code
gwlr.fixed
   ***********************************************************************
   *                       Package   GWmodel                             *
   ***********************************************************************
   Program starts at: 2023-01-17 23:27:18 
   Call:
   ggwr.basic(formula = status ~ distance_to_city + distance_to_tertiary_road + 
    distance_to_town + water_point_population + local_population_1km + 
    usage_capacity + is_urban + water_source_clean, data = Osun_wp_sp, 
    bw = bw.fixed, family = "binomial", kernel = "gaussian", 
    adaptive = FALSE, longlat = FALSE)

   Dependent (y) variable:  status
   Independent variables:  distance_to_city distance_to_tertiary_road distance_to_town water_point_population local_population_1km usage_capacity is_urban water_source_clean
   Number of data points: 4756
   Used family: binomial
   ***********************************************************************
   *              Results of Generalized linear Regression               *
   ***********************************************************************

Call:
NULL

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-129.368    -1.750     1.074     1.742    34.126  

Coefficients:
                                           Estimate Std. Error z value Pr(>|z|)
Intercept                                 3.540e-01  1.055e-01   3.354 0.000796
distance_to_city                         -1.764e-05  3.391e-06  -5.202 1.97e-07
distance_to_tertiary_road                 1.001e-04  2.040e-05   4.910 9.13e-07
distance_to_town                         -1.544e-05  2.825e-06  -5.466 4.60e-08
water_point_population                   -5.098e-04  4.476e-05 -11.390  < 2e-16
local_population_1km                      3.452e-04  1.779e-05  19.407  < 2e-16
usage_capacity1000                       -6.206e-01  6.966e-02  -8.908  < 2e-16
is_urbanTRUE                             -2.667e-01  7.474e-02  -3.569 0.000358
water_source_cleanProtected Shallow Well  4.947e-01  8.496e-02   5.823 5.79e-09
water_source_cleanProtected Spring        1.279e+00  4.384e-01   2.917 0.003530
                                            
Intercept                                ***
distance_to_city                         ***
distance_to_tertiary_road                ***
distance_to_town                         ***
water_point_population                   ***
local_population_1km                     ***
usage_capacity1000                       ***
is_urbanTRUE                             ***
water_source_cleanProtected Shallow Well ***
water_source_cleanProtected Spring       ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 6534.5  on 4755  degrees of freedom
Residual deviance: 5688.9  on 4746  degrees of freedom
AIC: 5708.9

Number of Fisher Scoring iterations: 5


 AICc:  5708.923
 Pseudo R-square value:  0.129406
   ***********************************************************************
   *          Results of Geographically Weighted Regression              *
   ***********************************************************************

   *********************Model calibration information*********************
   Kernel function: gaussian 
   Fixed bandwidth: 2377.371 
   Regression points: the same locations as observations are used.
   Distance metric: A distance matrix is specified for this model calibration.

   ************Summary of Generalized GWR coefficient estimates:**********
                                                   Min.     1st Qu.      Median
   Intercept                                -3.7021e+02 -4.3797e+00  3.5590e+00
   distance_to_city                         -5.4555e-02 -6.5623e-04 -1.3507e-04
   distance_to_tertiary_road                -3.1622e-02 -4.5462e-04  9.1291e-05
   distance_to_town                         -8.6549e-03 -5.2754e-04 -1.6785e-04
   water_point_population                   -2.9696e-02 -2.2705e-03 -1.2277e-03
   local_population_1km                     -7.7730e-02  4.4281e-04  1.0548e-03
   usage_capacity1000                       -5.5889e+01 -1.0347e+00 -4.1960e-01
   is_urbanTRUE                             -7.3554e+02 -3.4675e+00 -1.6596e+00
   water_source_cleanProtected.Shallow.Well -1.8842e+02 -4.7295e-01  6.2378e-01
   water_source_cleanProtected.Spring       -1.3630e+03 -5.3436e+00  2.7714e+00
                                                3rd Qu.      Max.
   Intercept                                 1.3755e+01 2171.6373
   distance_to_city                          1.5921e-04    0.0162
   distance_to_tertiary_road                 6.3011e-04    0.0237
   distance_to_town                          2.4490e-04    0.0179
   water_point_population                    4.5879e-04    0.0765
   local_population_1km                      1.8479e-03    0.0333
   usage_capacity1000                        3.9113e-01    9.2449
   is_urbanTRUE                              1.0554e+00  995.1840
   water_source_cleanProtected.Shallow.Well  1.9564e+00   66.8914
   water_source_cleanProtected.Spring        7.0805e+00  208.3749
   ************************Diagnostic information*************************
   Number of data points: 4756 
   GW Deviance: 2815.659 
   AIC : 4418.776 
   AICc : 4744.213 
   Pseudo R-square value:  0.5691072 

   ***********************************************************************
   Program stops at: 2023-01-17 23:27:45 

Visualising Confusion Matrix

Show the code
gwr.fixed <- as.data.frame(gwlr.fixed$SDF)
Show the code
gwr.fixed <- gwr.fixed %>%
  mutate (most = ifelse(
    gwr.fixed$yhat >= 0.5, T,F
  ))
Show the code
gwr.fixed$y <- as.factor(gwr.fixed$y)
gwr.fixed$most <- as.factor (gwr.fixed$most)
CM <- confusionMatrix(data = gwr.fixed$most, reference = gwr.fixed$y)

CM
Confusion Matrix and Statistics

          Reference
Prediction FALSE TRUE
     FALSE  1833  268
     TRUE    281 2374
                                          
               Accuracy : 0.8846          
                 95% CI : (0.8751, 0.8935)
    No Information Rate : 0.5555          
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.7661          
                                          
 Mcnemar's Test P-Value : 0.6085          
                                          
            Sensitivity : 0.8671          
            Specificity : 0.8986          
         Pos Pred Value : 0.8724          
         Neg Pred Value : 0.8942          
             Prevalence : 0.4445          
         Detection Rate : 0.3854          
   Detection Prevalence : 0.4418          
      Balanced Accuracy : 0.8828          
                                          
       'Positive' Class : FALSE           
                                          
Show the code
Osun_wp_sf_selected <- Osun_wp_sf_clean %>%
  select(c(ADM2_EN, ADM2_PCODE,
           ADM1_EN, ADM1_PCODE,
           status))
Show the code
gwr_sf.fixed <- cbind(Osun_wp_sf_selected, gwr.fixed)

Visualising coefficient estimates

The code chunks below is used to create an interactive point symbol map.

Show the code
tmap_mode ("view")

prob_T <- tm_shape(Osun) +
  tm_polygons(alpha = 0.1) +
  tm_shape (gwr_sf.fixed) + 
  tm_dots (col = "most",
           border.col = "gray60",
           border.lwd = 1) +
  tm_view (set.zoom.limits =  c(8,14))

prob_T

We will convert the t_score of the variable to its equivalent p-value and retrieve the statically significant rows.

Show the code
tscore <- gwr_sf.fixed$distance_to_tertiary_road_TV
pval_distance_tertiary = 2*pt(q = tscore, df = 4755, lower.tail = FALSE)
gwr_sf.fixed <- cbind(gwr_sf.fixed, pval_distance_tertiary)

We will now visualise the standard error of the distance to tertiary road after filtering by their p-value using tmap.

Show the code
tmap_mode("view")
tertiary_TV <- tm_shape(Osun)+
    tm_polygons(alpha=0.1)+
    tm_shape(gwr_sf.fixed[gwr_sf.fixed$distance_to_tertiary_road_TV> 1.9605 | gwr_sf.fixed$distance_to_tertiary_road_TV < -1.9605,])+
    tm_dots(col="distance_to_tertiary_road_TV",
            border.col="gray60",
            border.lwd = 1)+
    tm_view(set.zoom.limits = c(8,14))

tertiary_SE <- tm_shape(Osun)+
    tm_polygons(alpha=0.1)+
    tm_shape(gwr_sf.fixed[gwr_sf.fixed$distance_to_tertiary_road_TV> 1.9605 | gwr_sf.fixed$distance_to_tertiary_road_TV < -1.9605,])+
    tm_dots(col="distance_to_tertiary_road_SE",
            border.col="gray60",
            border.lwd = 1)+
    tm_view(set.zoom.limits = c(8,14))
tmap_arrange(tertiary_SE, tertiary_TV, asp=1, ncol=2, sync=TRUE)
Show the code
gwr_sf.fixed[gwr_sf.fixed$distance_to_tertiary_road_TV> 1.9605,]
Simple feature collection with 1 feature and 42 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 231373.6 ymin: 349636.1 xmax: 231373.6 ymax: 349636.1
Projected CRS: Minna / Nigeria Mid Belt
       ADM2_EN ADM2_PCODE ADM1_EN ADM1_PCODE status Intercept distance_to_city
1238 Ife South   NG030014    Osun      NG030   TRUE -98.47782    -0.0001811015
     distance_to_tertiary_road distance_to_town water_point_population
1238               0.003932217      0.002531213            0.007106841
     local_population_1km usage_capacity1000 is_urbanTRUE
1238         -0.001787563          -1.422056     34.26977
     water_source_cleanProtected.Shallow.Well
1238                                 6.289344
     water_source_cleanProtected.Spring    y      yhat    residual Intercept_SE
1238                          -7.225437 TRUE 0.9981949 0.001805081     6385.643
     distance_to_city_SE distance_to_tertiary_road_SE distance_to_town_SE
1238        0.0004576677                   0.00184112         0.008159577
     water_point_population_SE local_population_1km_SE usage_capacity1000_SE
1238                  198.8845              0.01401122              2204.343
     is_urbanTRUE_SE water_source_cleanProtected.Shallow.Well_SE
1238         4458094                                    13.14474
     water_source_cleanProtected.Spring_SE Intercept_TV distance_to_city_TV
1238                              154.9895  -0.01542175          -0.3957053
     distance_to_tertiary_road_TV distance_to_town_TV water_point_population_TV
1238                     2.135774           0.3102138              3.573351e-05
     local_population_1km_TV usage_capacity1000_TV is_urbanTRUE_TV
1238              -0.1275808         -0.0006451157    7.687089e-06
     water_source_cleanProtected.Shallow.Well_TV
1238                                   0.4784685
     water_source_cleanProtected.Spring_TV coords.x1 coords.x2 most
1238                           -0.04661889  231373.6  349636.1 TRUE
     pval_distance_tertiary                  Geometry
1238              0.0327488 POINT (231373.6 349636.1)
Show the code
pval_distance_tertiary
   [1] 1.00049787 0.90016494 0.99083279 0.88783432 0.99945806 1.00030565
   [7] 1.00308202 0.97363787 1.00005920 0.99043059 1.52004727 1.00047901
  [13] 1.00048549 0.99843143 0.99995500 0.99582917 1.00173697 0.99994920
  [19] 0.99608495 0.99469904 1.00025560 0.99009833 1.02946495 1.01112284
  [25] 1.86506379 0.99824092 0.99463622 0.95368946 1.00004644 1.00830149
  [31] 0.87717721 1.10062424 1.00049336 0.99427489 0.99447747 1.02805425
  [37] 0.99973377 1.00483363 1.55889184 1.06930536 0.99422901 1.00025132
  [43] 1.00251307 0.85702139 0.88113672 0.98343875 0.96802665 0.91246078
  [49] 0.99074911 1.00029071 1.07607794 0.97369576 0.98453255 0.99012906
  [55] 0.99975668 1.00010115 1.00025589 1.00068643 0.99993783 1.00229459
  [61] 1.00558391 1.00080016 1.31670122 0.99888749 0.99999301 1.00286789
  [67] 1.02720386 1.00009721 1.02501063 0.98817397 0.97296478 1.00033132
  [73] 1.00073097 0.99534014 1.00437456 0.98283964 1.06968070 0.98859041
  [79] 0.99815810 0.99591193 0.99959462 0.99977590 0.99537125 0.99830446
  [85] 0.99791333 0.99933707 0.99989686 0.96722910 0.99918228 1.00183421
  [91] 1.24190480 0.91176292 0.99607901 0.99857715 1.00035986 0.99983974
  [97] 1.02443440 1.01651630 0.99965391 1.00861113 1.28914852 1.09219022
 [103] 0.99900701 1.00041194 1.00009009 0.99979779 1.01108667 0.99870538
 [109] 0.96621576 1.05112955 1.00526576 0.94488983 0.99817066 1.00024652
 [115] 0.99994341 0.99617283 1.00016640 1.01591444 1.00296258 1.00014862
 [121] 1.00295924 0.99221471 0.99992233 0.90740650 1.00179408 0.99862779
 [127] 0.99964263 0.98597181 1.00599087 1.00907856 0.99862678 0.99622023
 [133] 1.00053740 1.00232389 0.88935171 1.00014561 0.92203242 1.00688206
 [139] 0.57878172 1.06432991 0.99933328 0.99986696 1.49987047 1.34821504
 [145] 0.99508370 1.00003033 0.99431954 0.98972711 0.99857317 1.00000538
 [151] 1.00008718 1.00450195 1.00148713 0.26695977 1.00380155 0.99995601
 [157] 0.99984044 0.89809991 1.00249446 1.00755759 0.98948047 0.99882419
 [163] 1.01292447 1.00469571 1.01029467 1.00011124 0.30210933 0.99015477
 [169] 0.98874585 0.99999207 0.99993416 0.98804919 1.01522743 0.99998786
 [175] 0.99956952 0.99995238 0.99653816 1.00179222 1.19920863 1.00009692
 [181] 1.00144660 1.42239131 0.99479140 1.00109988 1.00202201 0.88582071
 [187] 0.80221194 0.99999183 0.99999166 0.99942748 0.99994821 1.00076060
 [193] 1.00003875 1.99483849 0.99837025 1.00036251 0.99974781 0.99745391
 [199] 0.99796968 0.99997316 0.89101353 0.99688644 1.00025529 1.02388416
 [205] 1.01914861 1.00021819 1.00057177 0.99963966 0.99992611 1.04513282
 [211] 0.99737648 0.99670616 0.99889287 0.99996241 1.00024487 0.99525168
 [217] 0.99418559 1.00630364 0.73500620 1.00686007 0.99759371 0.98507388
 [223] 1.00733622 0.99725001 0.99366638 1.00012672 0.99992370 0.98031449
 [229] 0.99997113 1.00041633 0.99757624 1.00025131 1.29864094 0.99635356
 [235] 0.99840518 0.99291148 1.00054280 0.99985206 0.81921316 1.00005670
 [241] 1.01335968 0.99900538 0.98911004 1.00204562 0.99967560 0.99360374
 [247] 1.00026246 0.99802313 1.00039290 1.01110595 1.00003403 0.99502549
 [253] 0.98110984 1.02181566 0.99996669 0.94259818 0.99772433 1.00455291
 [259] 1.00007394 0.99704421 1.00028980 1.09106313 1.00206921 1.00005656
 [265] 0.99890328 1.00228415 0.99220526 0.96954830 1.03430013 1.00062585
 [271] 1.00905374 0.99995652 1.00004949 0.98539275 1.00050039 0.97451013
 [277] 0.99999540 1.00019914 0.99963005 0.97634435 1.16573445 0.98788726
 [283] 1.00004133 1.00005550 1.00182568 1.08923389 1.15684080 1.00688811
 [289] 0.99767284 0.97289088 0.99983840 0.99769478 0.99808728 0.99996952
 [295] 1.00002676 0.93738004 0.99329532 1.00030431 0.98701052 1.00807580
 [301] 0.99999987 0.99895975 1.12887775 0.84491331 0.99750115 1.00004750
 [307] 0.98866060 1.00008462 0.97460767 0.98635564 0.90907223 1.02841736
 [313] 0.99953316 0.97431525 1.00898953 1.00952033 1.00440117 0.99998951
 [319] 1.00828509 1.00326135 1.00006227 1.00009769 1.00055250 1.00008940
 [325] 0.99701755 0.99317113 1.03531956 1.03129793 0.99392665 1.00024932
 [331] 1.00004807 0.99501891 0.98202306 1.00345636 0.99990373 0.99031675
 [337] 1.00135823 0.99998024 0.99543169 1.01317439 0.98082713 1.00739255
 [343] 1.00011127 0.99995194 0.87038353 1.00004020 1.01280739 0.99998914
 [349] 0.99980592 1.16117108 1.00003419 0.93670821 1.99988468 1.00229369
 [355] 0.99998981 1.00008524 0.99999760 0.96730052 0.99184357 1.05208005
 [361] 0.99934533 1.00519081 1.01373061 0.99998935 0.99999313 1.00155238
 [367] 1.00380147 0.99716357 1.09606220 1.16749873 0.97505703 1.00006965
 [373] 0.99751084 0.97419648 0.99406607 1.00018035 1.00950336 0.99596593
 [379] 1.00355232 0.99999110 1.00070426 0.99586970 1.00027755 0.94455668
 [385] 1.00464451 0.99997526 0.99851883 1.00012186 1.02816925 0.99993926
 [391] 1.00042867 1.00010312 1.00474195 1.00006173 0.98629405 1.00026676
 [397] 0.84045306 1.02235053 1.01379876 1.00053231 1.00004654 1.00972560
 [403] 0.99503114 1.00280095 1.00003061 0.99961861 0.99774948 1.01496005
 [409] 0.99852507 0.98318017 1.02361629 0.99565681 1.07789607 0.88042513
 [415] 0.99675866 1.00009027 0.99573069 0.98552258 0.99571278 1.00030390
 [421] 0.99689609 0.88040110 0.99769204 0.99125565 0.75783723 0.99828348
 [427] 1.00085862 0.99719898 1.08799077 1.02282255 0.99996105 1.00430431
 [433] 1.00025091 1.01385038 0.98986621 1.09260545 1.02453498 0.99867610
 [439] 1.01091384 0.92624299 0.99781590 0.99772266 0.99971931 0.99768436
 [445] 0.99523901 1.00045099 0.99983594 0.99867919 0.99530938 1.00020106
 [451] 0.99708130 1.00005632 1.02509339 0.99187540 0.98375408 0.92848040
 [457] 0.97283729 1.00869810 1.00463037 0.99768482 0.92454376 0.96901515
 [463] 1.01452167 1.05587957 1.00008285 1.00949199 0.98497587 0.99628104
 [469] 1.02698656 0.99978161 0.99936018 1.00012069 0.99941654 0.98536923
 [475] 1.00785322 0.97393577 1.00001408 1.00041806 1.05061037 1.00009709
 [481] 1.27512291 0.99994206 1.00527592 0.99994813 0.99996857 0.99969241
 [487] 0.98629324 0.97103767 0.99935065 1.05010525 0.99966064 0.99857300
 [493] 0.99826630 1.00006668 0.99996732 0.99729468 0.99973620 1.00006130
 [499] 0.99992910 1.00061112 1.00027600 1.00122571 1.00011265 0.07121212
 [505] 1.01018692 0.99994703 1.00895699 0.99994878 0.99989144 0.99696195
 [511] 0.99430020 1.00004061 0.99454950 0.99997430 0.88394785 1.00014088
 [517] 0.99997244 1.01537597 0.99773528 0.99808190 1.00003975 0.90837507
 [523] 0.98875923 0.99722011 0.99984571 0.87444358 1.00683908 1.00455317
 [529] 1.00040829 0.99320041 0.99324609 0.99777520 0.99523874 0.99817481
 [535] 1.57982857 0.97605784 1.00020767 1.00018496 0.99906289 0.98850716
 [541] 0.99722810 0.99941137 0.99933159 1.00545609 1.00009354 0.99934571
 [547] 1.04161533 1.01387609 0.99986160 1.99990185 0.99986819 0.99974215
 [553] 0.81505553 1.00125200 1.00009791 0.99994950 1.00008978 0.99833918
 [559] 0.99999134 0.81214687 1.00133332 1.00035678 1.00149555 1.00015443
 [565] 1.00020194 1.00948356 0.99982018 1.01481097 1.00554917 0.99639449
 [571] 1.00085641 0.87305517 0.98297523 1.06753696 0.99403650 0.99976029
 [577] 0.90392449 1.00035831 0.99967075 1.00156417 0.99935007 0.66138089
 [583] 0.99987058 1.00092402 0.99753291 0.99994224 0.99245294 1.00152647
 [589] 1.00037346 0.99950462 1.00011012 0.99702715 0.99987734 1.01333011
 [595] 0.99663167 1.00023058 1.09541511 1.00611875 0.99996489 1.00344132
 [601] 0.68844657 0.99411174 1.00167742 0.99997134 0.99485099 0.89980952
 [607] 1.00108083 0.98464108 0.99134380 0.99998695 1.00268239 1.00490890
 [613] 0.99084291 0.99994553 0.99967887 1.00022112 0.99873761 1.00004292
 [619] 1.00055041 1.00019662 1.01414551 1.00018190 0.93552723 0.98867266
 [625] 1.01000016 1.00120731 1.00368556 1.01545312 0.98923249 0.99907337
 [631] 0.99985872 0.86073476 1.00003165 1.01817799 0.99980763 1.00038377
 [637] 0.98827337 0.96146027 0.99957893 1.00041594 1.00175723 1.00006160
 [643] 0.99958951 0.99999645 1.00297703 1.00011517 0.98673978 1.00288909
 [649] 0.99487584 0.43879931 0.99639788 1.00004177 0.99613219 0.98019194
 [655] 1.00261455 1.00126995 0.99749505 1.00126325 1.00160063 1.00059368
 [661] 0.99999127 1.00277762 0.98482836 1.00541113 1.99988288 1.00012847
 [667] 0.99655676 0.99774189 1.00054354 1.00102552 0.99950789 0.95678169
 [673] 0.99899479 1.00173870 0.82019951 0.97828880 1.00103401 1.00137825
 [679] 0.99585379 1.06778406 0.99992394 1.01186239 0.99999287 0.99719743
 [685] 1.01120060 0.99806670 0.99883454 1.00345543 0.99999134 1.00028637
 [691] 1.00126116 0.97033899 1.00000305 1.00121022 1.00016677 0.99041175
 [697] 1.00009050 1.00212478 1.06343230 0.98893902 1.00201824 0.99659111
 [703] 0.84459022 1.08344183 1.07587502 0.40540495 1.00135257 1.00035227
 [709] 0.73766369 1.01625805 1.00187880 1.00178142 0.84191754 0.96653724
 [715] 0.99974208 1.03411201 0.99997056 0.99465411 1.00010412 1.00007543
 [721] 1.05855824 1.00078275 1.02686928 1.00011022 0.97443496 1.00182425
 [727] 0.99955998 0.83731885 0.93975520 0.99858676 0.99856669 0.99997966
 [733] 1.02783994 1.01791422 0.96893278 0.99491911 1.00054242 1.00011608
 [739] 1.00870778 1.00028240 1.03840669 1.05883954 0.99998894 1.00709471
 [745] 0.99789008 0.96868069 1.00046797 1.00017264 1.00073348 1.00025059
 [751] 1.00106779 0.99819533 1.00024009 0.98047643 1.00024405 1.00006860
 [757] 1.01867519 0.99709057 1.01600005 0.99990446 0.97960902 1.00014844
 [763] 1.00005045 0.87900518 1.01193630 0.99276130 1.00265789 1.00008994
 [769] 0.99996746 0.99808637 1.01479501 0.99927707 0.99800608 0.99991157
 [775] 1.00956327 0.99980636 1.02097195 1.00006988 0.99999767 0.98371654
 [781] 0.99159925 0.99998285 1.00083313 1.09375113 0.99059611 1.00003234
 [787] 1.00017491 0.98304496 1.01735806 0.99473869 0.97072834 1.00722327
 [793] 0.99927203 1.03562666 0.99272582 1.00560014 1.00011258 0.37865829
 [799] 1.00515276 0.48032901 1.03478111 0.99882910 1.00311203 1.29359054
 [805] 0.99563889 0.94846520 0.96637459 0.99672782 0.98519655 1.00642947
 [811] 1.00021546 1.00020747 1.00007232 0.98799490 0.99980637 0.86279093
 [817] 1.02020195 1.01355440 1.00023238 0.99987262 0.99998503 1.00140791
 [823] 0.99995100 0.99672903 1.12065204 0.99840135 1.00006629 1.00191171
 [829] 1.00712852 0.99417235 1.00023979 0.99803534 0.99926571 0.99992565
 [835] 1.00547027 1.00537840 1.03536351 1.00486639 1.00000072 1.00118410
 [841] 1.02683882 0.99186116 1.00004773 0.98773182 1.00034771 0.99647731
 [847] 1.27872737 1.02509213 1.01470701 0.99335953 0.99929707 0.99019748
 [853] 0.97625877 0.98660352 0.99997780 0.98027102 0.98711554 1.00070169
 [859] 1.00007405 1.00970843 1.00181343 1.00166802 0.89783826 1.04628895
 [865] 1.01903699 0.99698739 1.00156004 1.00172556 1.00061886 0.89515373
 [871] 0.99863610 1.00068021 1.00017462 1.00518884 0.99709509 0.65458688
 [877] 0.99922789 0.94213160 0.99712369 1.03853895 0.99331838 1.00407523
 [883] 1.01052520 0.99981246 1.00231655 1.00006279 0.82801661 0.99729296
 [889] 1.06663992 0.99991146 0.99963910 0.98508250 1.01363882 1.00008956
 [895] 0.95953342 1.00054697 1.00269067 0.99036119 0.99998468 1.00109131
 [901] 0.99981197 0.99754007 1.00012379 0.99348525 0.99995094 0.96864405
 [907] 0.99754670 0.98537280 0.97622017 1.00133616 1.00031722 1.00361084
 [913] 1.00008944 1.00011772 0.99994159 1.00016331 1.00145472 0.99976629
 [919] 0.99736219 0.99708093 0.99974446 1.03298275 0.99997784 0.99794336
 [925] 0.99995406 0.99973787 1.00003775 0.95737738 0.99877709 1.01311049
 [931] 0.99560121 0.97974838 0.97810352 0.98845004 1.00013096 1.00412366
 [937] 1.00014052 0.87847168 0.99996983 0.97767865 0.99580753 1.00756928
 [943] 0.99455666 1.00655965 1.00041685 1.01308777 1.00524978 0.99999820
 [949] 1.00410414 1.00780016 1.00440053 1.01066471 0.98685093 0.99350190
 [955] 1.00080504 0.99949736 1.00904907 0.99559943 1.01782092 0.99997792
 [961] 0.99375320 1.00507627 0.91431906 0.96902311 1.00099196 1.00644476
 [967] 0.99877894 0.99764176 1.00012982 0.99727446 1.15616366 1.04240191
 [973] 0.99446024 0.99999781 1.00011826 1.00009127 1.00002587 1.00026415
 [979] 1.00015886 1.00187970 1.00122114 1.02445064 0.99969432 0.99778129
 [985] 1.00194556 0.99996843 1.00362712 1.00015776 0.99758949 1.00007151
 [991] 1.00002875 0.99724851 0.99994310 1.00020247 0.98956315 1.00006385
 [997] 0.99837965 0.99999244 1.00011093 0.25593602 1.00052503 1.00054129
[1003] 0.98796841 0.43842604 0.99998248 1.00052033 1.00009123 0.99999870
[1009] 1.00735747 1.00005600 0.80651007 1.05691004 0.97950499 0.99986343
[1015] 1.00418026 1.00005917 1.00002649 0.91206748 0.99646308 1.00231776
[1021] 0.99999178 1.00042652 1.00008076 0.99978656 1.07201856 0.96412683
[1027] 0.99518300 0.99769365 0.99786374 1.03724198 0.99443514 0.99997255
[1033] 1.00721022 0.99265914 0.99932050 0.99912099 1.11237510 0.99927675
[1039] 1.00010153 1.00006389 1.01461719 0.98201669 1.00008773 0.99399573
[1045] 1.01020298 0.99999162 1.28399669 1.00176794 0.98842266 1.00003126
[1051] 1.00018391 0.99980070 0.28899839 0.87428653 1.00031506 1.00151667
[1057] 1.00008363 1.00011511 1.00549523 1.04977795 1.00555912 1.07917464
[1063] 1.00714020 0.99992027 1.01640135 0.99989611 0.99937136 0.99793709
[1069] 0.99963073 1.00378081 1.04690859 0.91508066 0.88909106 1.01375161
[1075] 1.00117228 0.99689792 0.94814674 0.99970817 0.99993686 0.91582704
[1081] 1.08942072 1.01268933 0.99262074 1.01691636 1.00335456 1.02071873
[1087] 0.99992900 1.00039740 0.99971827 0.98947777 1.00429864 1.00023176
[1093] 1.00599498 1.00150805 1.01366467 0.99985707 1.06941979 0.34837214
[1099] 1.00032371 1.00012714 0.99724379 0.99711799 0.99999378 1.00443931
[1105] 1.00041471 1.00620868 1.12407964 1.05127721 1.00062615 1.00518330
[1111] 0.97366143 1.00014354 0.99789036 0.06422510 1.04000837 0.99036482
[1117] 0.99947148 0.99080597 1.01028205 1.00014092 1.02144991 0.99423504
[1123] 1.00005805 0.99769405 0.99939297 0.99971614 0.99979798 0.98664696
[1129] 0.99471325 1.01039858 0.91485525 1.00008882 0.98329834 1.01026294
[1135] 1.00474647 1.00372440 1.00095858 0.99995219 0.99998971 1.03812480
[1141] 0.99822036 1.00007255 1.10422614 1.00002859 0.99984936 1.00155983
[1147] 1.00076484 0.99985648 0.99582539 0.99833267 0.99971166 1.01373919
[1153] 0.99994722 1.00019236 0.98840824 1.00453643 1.00139316 0.98700552
[1159] 1.07631728 0.99323003 0.99707409 1.00777285 0.99865459 1.03004212
[1165] 1.33391880 1.00006574 0.99696920 0.99857776 1.01132642 1.00969882
[1171] 1.00247173 1.12081982 0.95711288 1.00081767 0.93200196 0.99482092
[1177] 0.99884556 0.99551390 0.97988907 1.00498697 1.37531737 0.99996473
[1183] 0.99871915 0.93740398 0.99618957 1.00003217 0.99686750 0.99718837
[1189] 0.97806027 1.00123508 0.96936873 1.00053864 1.00080561 1.00047386
[1195] 0.98808977 0.99947951 1.01674567 1.01482284 1.20097442 1.00016694
[1201] 0.99670321 1.00417187 0.99414589 0.99998393 0.99999215 1.00020808
[1207] 1.00079754 1.00259022 1.00439391 0.93547167 1.00009030 0.99925322
[1213] 0.98645367 0.99999779 1.00016540 1.00057457 1.00031490 1.00343022
[1219] 1.00021792 0.99661464 0.99998267 1.00441951 1.01442728 1.00034296
[1225] 0.98764330 0.23378141 0.98150513 0.99358963 0.98109977 0.99965340
[1231] 0.84166047 0.99257860 1.09109913 0.99807096 0.99904580 1.00017395
[1237] 1.00007012 0.03274880 1.01693064 0.99713711 0.87205199 0.99455342
[1243] 0.99155367 1.02115934 1.00196966 1.00007183 1.00015707 1.00160529
[1249] 1.01012641 0.99987096 0.99510404 1.00723686 1.00013149 0.90282183
[1255] 1.00011906 1.06631189 1.00216650 1.00031508 1.00174662 0.77528457
[1261] 0.98722106 1.00004731 0.99763444 0.95939762 0.99709103 0.99550171
[1267] 1.00577726 0.95602973 0.99261410 1.06928643 0.97386119 0.99824299
[1273] 1.38086531 1.00028020 1.00003403 0.65112162 1.01025962 0.99458411
[1279] 1.00409545 0.99959227 0.99966240 1.00219752 1.01415528 0.92831541
[1285] 1.00192633 1.01325116 1.40892222 0.99875253 0.97367732 0.94714238
[1291] 1.00098747 1.01904990 0.98974256 1.00119599 1.00006846 0.99992406
[1297] 0.96654575 0.98725521 1.00511296 1.99544652 1.01511944 1.00003070
[1303] 0.99693203 0.99304299 0.96503964 0.99500777 0.99970691 1.00009117
[1309] 0.98182912 1.00041243 1.99579948 0.99848990 0.99975881 0.88465777
[1315] 1.00020526 1.22090947 0.98854348 1.00028967 1.00006468 1.00005214
[1321] 1.00043528 0.99999176 0.99804280 1.00339372 1.00990016 0.99984063
[1327] 1.00028103 0.99959101 0.99577723 0.99992027 0.99752774 0.99740563
[1333] 0.99990551 0.99933764 0.98135125 1.00045852 0.99934937 1.00058355
[1339] 0.99532259 0.99794643 0.99730666 1.00009054 0.99652602 1.07032573
[1345] 1.00007873 0.90117000 0.99221843 0.99429960 1.00020935 1.00149304
[1351] 1.01365354 0.99963346 0.99942946 1.00038450 1.00000198 0.99682848
[1357] 1.04814895 0.99976463 0.95042502 0.99882490 1.00399279 1.14069651
[1363] 0.99798190 0.99397479 0.99942832 1.06422602 0.99984754 1.00075866
[1369] 0.99612667 1.01473456 0.99998526 0.99821689 0.43164434 0.99943142
[1375] 0.99995184 0.99289521 0.84375941 1.00347157 1.00015605 0.99609374
[1381] 0.96733798 1.00178572 0.99554406 1.08750157 0.99989454 0.99992037
[1387] 0.96836270 0.99764710 0.99994532 0.99988171 0.99903366 1.01756968
[1393] 0.93103631 1.00043927 1.00036702 0.99801160 1.00347292 0.99297510
[1399] 1.00818984 0.98352757 0.98463323 0.99987201 0.99510553 0.99970483
[1405] 0.82613650 0.99665618 0.99317029 0.99829011 0.99712798 1.02823730
[1411] 0.99993872 0.99993789 0.99401912 1.00404059 1.00103739 1.00062512
[1417] 1.01466023 0.99970619 0.90366537 0.97844544 1.00021932 1.01751155
[1423] 1.00016182 1.00006140 0.99957971 1.07219072 1.00028369 0.99601021
[1429] 1.04395015 1.00012210 0.82528645 0.99990358 0.99985799 0.99501322
[1435] 0.99994378 1.00025236 0.57171681 1.03149710 0.99291412 1.05479039
[1441] 0.99670128 1.00390991 0.99977175 0.99960530 1.00702801 1.00013535
[1447] 1.00248181 0.62387189 1.08515031 1.00018132 1.00007894 0.59172345
[1453] 1.00029156 1.00000158 1.01323507 0.99119882 1.00356836 0.99866035
[1459] 1.00010084 1.00084727 1.00024698 0.85279203 1.00239145 0.99927842
[1465] 0.99980242 1.41224357 0.98956814 0.98580104 0.99987630 0.99985074
[1471] 0.99998190 1.00555757 0.89964190 0.91473517 0.98779397 0.99996787
[1477] 1.00131090 0.99868481 0.99117416 0.99987893 0.99984404 1.06823554
[1483] 0.99586245 0.99975246 1.00011910 1.10320223 1.00047986 0.99952629
[1489] 1.00029873 0.93065394 1.00032112 1.00212660 1.00530298 0.99988050
[1495] 0.98970047 0.99749288 0.99596510 1.00096391 1.01644278 0.98416031
[1501] 1.00313430 0.99405772 0.99994455 0.99987828 1.00047698 0.99408986
[1507] 0.99301493 1.00379045 0.99657807 1.02195830 1.00008256 0.99779121
[1513] 1.00156137 1.01777432 1.16398639 1.00601825 0.99470262 0.98811034
[1519] 1.00373154 1.99574106 0.99661198 1.00016833 1.00009736 0.99850470
[1525] 1.00096098 0.65125147 0.99949067 0.78709898 1.00741534 1.00646259
[1531] 0.89285088 1.09182439 1.00536460 0.99942203 0.96948475 1.00833609
[1537] 0.99992868 1.01883325 0.99439255 1.00037014 0.98310091 0.99999619
[1543] 1.00005900 0.99981853 0.89051964 0.99460953 0.99914519 1.00010106
[1549] 0.97773908 0.99794481 0.99996875 1.00248944 1.00093107 1.99419107
[1555] 0.99933326 0.81160911 1.00087655 1.00012967 0.99787554 0.99986055
[1561] 0.99985650 0.99113101 0.99996886 1.00066151 1.00005328 0.99507407
[1567] 1.00082838 0.99269078 1.00452773 0.99996138 0.99836361 1.02141981
[1573] 1.00006031 0.97055766 0.97663477 0.99592465 0.99842511 0.99032009
[1579] 1.00009995 0.99432099 0.99807472 0.98326757 1.00107425 1.00134438
[1585] 0.97977671 1.00188182 1.00002995 1.00513399 0.98882874 1.00017558
[1591] 0.99807184 1.00013257 0.98224783 0.96432877 1.00052792 0.99944781
[1597] 1.00029512 0.99462820 1.00095644 0.98756388 0.98758162 1.00114844
[1603] 0.99830956 1.01447072 0.95495307 0.99141734 0.99978357 0.99967079
[1609] 0.99982690 1.00053301 1.00003491 0.96743938 1.00199350 1.00004729
[1615] 1.01879643 1.00636125 1.02102280 0.99938388 0.99996772 0.99403457
[1621] 0.99996951 1.25782740 0.99875432 1.00484617 0.98867459 1.00698644
[1627] 1.00012910 1.01909617 0.99843612 1.00034425 1.00009107 0.98371692
[1633] 0.99993528 1.03459179 1.01536913 1.00014973 0.99513786 0.99875032
[1639] 1.00028871 0.99984777 0.99993238 0.99650325 0.25051919 0.99713822
[1645] 0.84597141 1.02036697 0.99285657 1.00380236 0.99526067 0.99992006
[1651] 1.00442360 1.00002214 1.00385479 1.00277676 0.98952874 0.99987936
[1657] 1.00103400 0.99997055 0.99254179 1.22263381 0.99968819 1.00442661
[1663] 0.99953128 0.99985794 0.99995960 0.99961929 1.00610404 1.00374859
[1669] 1.00359699 0.99966200 0.99800809 1.00014950 1.00002660 0.99987070
[1675] 0.94855740 1.00302146 0.99794923 1.00486855 0.99853215 1.00119408
[1681] 0.99492415 0.99450704 0.99818561 0.95849429 1.00086422 0.90951499
[1687] 0.99932227 1.00268854 0.96986766 0.99388224 0.99386324 1.00014492
[1693] 0.96846984 0.99896875 0.98792353 1.00020946 0.99640815 0.99831425
[1699] 0.99914692 0.99453117 0.99929182 1.01147194 0.99994716 0.83683327
[1705] 0.99707506 1.00010859 0.73361544 1.00007287 0.99783591 0.99994974
[1711] 1.00292785 1.04081477 0.51012040 1.00009665 0.99979247 0.99823129
[1717] 0.99648423 0.92198024 0.99991125 0.99126318 1.00019859 0.99687087
[1723] 1.00013475 0.89971961 0.99773823 1.00761985 0.98337203 0.99953570
[1729] 1.00386553 0.96516263 1.00002597 0.99967584 0.99980462 1.00018307
[1735] 0.99766341 1.00271717 1.01451405 0.99979781 0.94065887 1.01136317
[1741] 0.99983736 0.43910995 0.98760053 1.11669815 0.89386730 0.99986555
[1747] 1.00149770 1.00372328 1.00012870 0.99765978 1.00001468 0.99996547
[1753] 1.18758886 0.99908080 1.00040431 0.99086005 0.99858276 1.00006446
[1759] 1.01897603 0.99955742 0.99420317 0.99982849 0.99689232 1.00010060
[1765] 0.89216214 0.99988440 0.99968426 0.99574950 0.91278455 1.00007706
[1771] 1.00507277 0.96632251 0.99428699 1.00044306 1.00740790 1.00108544
[1777] 0.99506047 0.99878001 1.00006277 0.99994330 0.99607530 1.02030719
[1783] 0.99900939 0.99968840 0.99996206 1.00032751 0.99861617 1.00333736
[1789] 0.99979860 0.95265973 0.98887602 1.01589658 1.53837770 0.99992461
[1795] 1.00005603 0.99584095 1.00639031 0.99020322 1.00032576 0.99966136
[1801] 0.99835378 0.99997515 0.99986601 1.00008424 0.99562306 1.23734256
[1807] 0.99977431 0.99983187 0.99783605 1.10565512 1.00008419 0.99997440
[1813] 1.25804995 1.03147785 0.96525358 1.00003233 0.80904164 0.99938839
[1819] 0.99992696 0.99399977 0.99571052 1.01879100 0.99941748 1.00196143
[1825] 0.99814719 0.99576652 0.99995275 1.00038905 1.00030169 1.00018667
[1831] 1.00145107 1.00021959 1.00004682 0.99897716 0.99463052 0.99651791
[1837] 0.99757005 1.00102132 0.99819198 0.99225010 0.99827138 1.00007220
[1843] 0.99983496 0.99195219 1.00128801 0.98120199 0.99982421 0.99541116
[1849] 1.00072972 0.99954956 1.00011185 0.99810508 0.99049092 0.99999927
[1855] 1.00006121 1.00611425 0.99969785 0.99873855 0.99986665 1.00015256
[1861] 1.03322732 0.99656479 1.00407977 0.97314381 1.00021140 1.00676807
[1867] 1.00899950 0.87932368 0.99899051 1.01590219 1.00021346 1.21892814
[1873] 0.99126254 0.98851797 0.99865708 0.99286082 1.00968567 1.01975730
[1879] 0.99722568 0.99740183 1.01583554 1.03863997 1.01329528 0.99833016
[1885] 0.99650324 1.00026478 0.83534423 0.99998061 0.99934363 0.99967275
[1891] 1.00028199 0.99298882 1.00129911 1.00051003 1.00009758 1.02082376
[1897] 1.00008219 0.99313234 0.84219922 1.00010713 1.03208751 1.23743150
[1903] 0.94923850 1.00009555 1.00997047 1.00018414 1.00188848 0.99965412
[1909] 0.99706865 1.00563746 0.99742433 0.99994600 1.00563221 1.00806742
[1915] 1.00756111 0.99956555 1.00009251 1.00003398 1.00050922 0.87883017
[1921] 0.98329337 0.99984526 1.00078169 0.99750363 0.99694579 0.99787245
[1927] 1.00004221 0.99971764 0.99661206 0.64087477 0.99998307 0.99749187
[1933] 0.99968857 0.99386620 1.00002181 0.99984968 1.00067957 0.99852663
[1939] 0.99989625 0.98364599 0.99886315 0.97018617 0.99973704 1.00093800
[1945] 0.99794821 0.99498593 0.99786570 0.95498538 1.00180032 1.00048568
[1951] 1.00013564 1.00011555 0.87423140 0.99803647 1.02218484 0.99692998
[1957] 1.00009261 1.00233867 1.00004911 1.00070485 1.00178441 0.99889104
[1963] 0.99998153 0.99662963 0.99621913 0.99965330 0.98887458 0.99987254
[1969] 1.00200638 0.93488962 0.99429122 0.99553570 0.95408514 0.99081149
[1975] 0.99996898 1.00012246 1.03471750 1.62189892 0.98793636 1.02315253
[1981] 0.99986485 0.99988402 1.16233558 0.99969519 0.96822549 0.99839047
[1987] 0.66734440 0.92614678 1.00006144 0.89398484 0.99761511 1.00071853
[1993] 1.00028153 0.99809821 0.94335112 1.00027340 1.01582544 1.00838129
[1999] 0.99997005 0.99964015 1.01891964 0.99401491 0.99751161 0.99627992
[2005] 1.00266407 1.00173473 1.00012010 1.00006663 1.21307041 1.00018003
[2011] 0.99956458 1.00005474 0.80352595 0.99974076 0.99989191 0.99506407
[2017] 0.99378305 0.99964306 0.99964989 1.00010811 0.98404495 0.98736348
[2023] 0.99795018 0.89105534 0.96963436 1.00009109 1.00088514 0.99853763
[2029] 1.00017751 0.93080704 1.00061736 0.99997363 1.00016418 0.95134832
[2035] 1.00008986 0.99946445 0.99902381 0.99996067 0.99358603 1.01189570
[2041] 0.99601987 0.99462906 1.00241948 0.99785131 1.00079737 0.99989690
[2047] 0.99638726 0.99932397 0.99782996 1.00078670 1.00294746 1.00011730
[2053] 0.99957275 0.94332203 1.00006383 1.00149711 0.99519835 1.00051638
[2059] 0.99964748 1.00016697 1.01088858 1.00127463 0.97292047 0.99983980
[2065] 1.00006244 0.99759145 1.00004307 1.00066291 1.01481578 1.00071258
[2071] 1.00032283 1.00172180 0.99981812 1.00010132 0.99084954 1.01359191
[2077] 1.00134219 0.99990688 0.89949970 0.96289565 1.11833146 1.00190658
[2083] 1.01045814 0.97511812 1.00009500 0.97575578 0.99276224 1.00009857
[2089] 1.00186724 1.00102145 1.00010822 0.99033352 1.00005491 1.00009635
[2095] 0.99257595 0.99987016 1.00010038 1.00094349 1.01053793 1.00672987
[2101] 1.00099729 1.00046471 0.99935841 0.99699496 0.99518198 0.99983967
[2107] 0.99254217 0.99999435 1.02292404 1.00003523 1.00062840 0.99886999
[2113] 0.60048548 0.99934768 0.99984996 0.99944438 0.99994627 0.99366843
[2119] 0.68872438 1.00009807 0.99988464 0.99805106 1.00257164 0.99647187
[2125] 0.98579488 1.00000139 0.99927445 1.00069033 0.99929189 1.00024865
[2131] 0.99935188 0.99996833 0.96366308 1.02541338 0.99997694 0.99959374
[2137] 1.00651732 0.99915185 1.04367206 1.00074472 1.03785382 1.00061336
[2143] 0.92146898 0.99908140 1.00034348 0.98168684 1.00032136 0.71400807
[2149] 0.98665089 0.96890185 1.00278396 1.00272044 0.99977093 1.00089012
[2155] 1.00119420 0.99989861 1.00516824 1.01349675 1.00080937 1.00180792
[2161] 0.97684974 1.00006748 0.99787619 1.00013852 1.00016196 0.99810340
[2167] 0.95259376 0.99990833 1.00148473 1.00181368 0.93694575 1.01648919
[2173] 0.99874860 1.23093068 0.97294471 1.00073492 0.99993640 1.00004842
[2179] 0.99938080 1.00044356 1.00173542 0.99886343 1.00015674 0.99984204
[2185] 0.99998843 0.99478717 1.00020886 1.00675259 0.96580519 0.99779189
[2191] 0.92301100 1.02043016 0.95437591 0.99017799 0.99995981 1.02899510
[2197] 1.00021780 0.99835812 0.93695948 0.99668462 0.99998308 1.00046158
[2203] 0.99831424 0.99801671 1.00160770 0.98461129 0.98144635 0.92954950
[2209] 0.99984595 1.00005804 0.98036437 1.01977276 0.96646444 0.99680750
[2215] 1.00003435 0.99238179 0.99824315 1.00832091 0.99693317 1.00010270
[2221] 1.01913621 0.99673943 1.00009677 1.00005503 1.00068107 0.99347026
[2227] 0.99986667 0.97385380 0.98101699 1.00044051 1.00020142 0.99981908
[2233] 1.00074714 0.99702486 0.99699558 0.90501939 0.92149530 0.99981268
[2239] 0.99789844 1.00008659 1.00045116 0.99999886 0.88560523 1.00006579
[2245] 0.92684562 1.01176660 0.99825182 1.01278157 1.00008463 1.00339831
[2251] 1.00136273 1.00887150 1.00457863 1.00043385 0.99986197 1.00048521
[2257] 0.98238377 0.99599056 1.00813580 1.00206906 0.92339177 1.00461236
[2263] 1.00006872 1.00386258 0.99941878 1.00056381 0.99976600 0.99980547
[2269] 1.00011493 0.99400182 0.99608488 0.99970115 1.00016970 0.99816380
[2275] 1.02822536 0.99956067 0.99481821 1.00416649 1.00080824 0.90478944
[2281] 0.99988534 1.01457509 0.99287774 0.99724640 1.00011541 0.96284913
[2287] 1.00671387 0.98221437 1.00019550 0.93969465 1.00282820 1.00008004
[2293] 1.00008359 1.04316725 0.99983131 0.99270226 1.00035930 0.99430699
[2299] 1.00025022 1.00007181 1.00167064 0.99723007 1.02079535 0.99895103
[2305] 0.97602523 0.99982312 1.00043149 0.99224340 0.69598615 0.97422783
[2311] 1.01836823 1.00109069 1.00008873 1.00233870 1.00100531 1.00503693
[2317] 1.03885889 0.97291125 1.31411410 1.00052334 1.00005171 0.99990391
[2323] 1.00062987 1.00061802 1.00359217 0.99912378 1.00014772 0.99985765
[2329] 0.99332886 1.00005963 1.00189458 1.00023918 1.00025007 1.00079998
[2335] 1.00130473 0.99842069 0.62207664 0.99997578 0.96655912 0.92625400
[2341] 0.97893903 1.00796781 1.00002709 1.00071729 0.99995130 1.00276405
[2347] 1.01671841 1.00052632 1.00544700 0.99150996 1.02744749 0.90787425
[2353] 1.27117487 0.99872732 1.03083210 1.28631997 0.95707571 1.00233108
[2359] 0.97772706 1.00060972 0.91442098 1.00217501 1.00903992 0.91703059
[2365] 1.01480909 1.01199782 1.00008945 0.99990672 1.00345651 0.63036957
[2371] 0.99644211 0.99808498 1.24895673 0.99983962 1.00276747 1.00235787
[2377] 1.00007149 0.99490469 1.00178591 0.99984042 1.00455618 1.01056974
[2383] 1.00009233 0.99993295 0.99519817 0.98951016 1.00426253 1.00406244
[2389] 0.99982337 1.00790136 1.00680597 1.00667226 0.99773370 1.00031160
[2395] 1.08805757 1.00229755 0.98306931 0.99901195 1.00010442 1.00002039
[2401] 0.99703971 0.99797879 0.99977252 1.01720775 1.00144641 1.01327741
[2407] 0.99957000 1.00253936 0.86163531 1.00009963 0.99990588 1.00719622
[2413] 1.00006804 1.00025678 0.99985474 1.00016049 1.00015587 0.97203643
[2419] 1.00103675 1.02380331 0.99923911 0.99997731 0.95332504 1.00897141
[2425] 1.00057152 1.00131572 1.00010057 0.99994467 0.99667465 1.00002603
[2431] 0.99904236 0.98957222 1.08469259 1.02259677 1.00044007 1.00004637
[2437] 1.00708923 0.99670545 1.00841219 1.01139812 1.00007339 1.00003497
[2443] 0.99833699 0.99907238 1.00201486 0.93237018 0.83341724 0.99971698
[2449] 1.00003823 0.98761422 0.99717105 1.00328694 0.99942694 1.00105337
[2455] 1.12810218 0.99429291 1.00006503 1.00009854 0.97201583 1.00003726
[2461] 0.60943981 1.02914320 0.99739096 1.00223206 0.99503751 1.00099303
[2467] 1.00044687 0.99888940 1.00128857 0.99956458 0.99806946 1.00063296
[2473] 0.99758905 1.00073059 0.98669963 0.99607994 1.00036406 0.99966924
[2479] 1.00000126 1.01462240 1.00010165 0.99859648 0.67104781 1.01149026
[2485] 0.92876958 0.99816810 1.00005403 1.00395096 1.00015944 1.01285979
[2491] 1.00071290 0.99855478 1.01544127 0.64757434 0.99769320 0.99960013
[2497] 1.18277200 0.99996855 1.15257419 0.96472544 1.24577138 0.99932393
[2503] 1.09232111 1.26867402 1.32327978 1.23516335 1.20806685 0.99995639
[2509] 0.99659448 0.99875222 0.98635827 0.99932801 1.24619221 0.99982548
[2515] 0.99982085 0.99982796 0.99989739 0.99984479 0.99977924 1.17802751
[2521] 1.23928587 0.99998240 0.84395697 0.99989812 0.99997066 1.27366078
[2527] 1.00007326 1.23930247 0.99988130 0.99952203 0.99984961 0.99986588
[2533] 1.23899983 0.99933152 0.99963109 1.26268443 0.97247215 0.99990128
[2539] 1.26811674 0.99959745 0.99992697 0.99979197 0.99993689 1.32557127
[2545] 0.99544464 1.24589478 1.27918584 1.13211110 1.27253984 0.99836678
[2551] 1.24846796 0.99982134 1.00001227 0.99986310 1.23767744 1.40895392
[2557] 1.17727409 1.31427819 0.97060000 0.99988469 0.97233740 0.83602841
[2563] 1.25305479 0.99989885 1.32725432 0.99990687 1.23743495 0.99844698
[2569] 1.26919645 0.99508876 1.21915286 0.99876910 1.17943240 1.32908528
[2575] 1.21554029 1.19217183 0.99965995 0.99992133 1.29162919 0.99993397
[2581] 0.99987298 0.98813744 1.24591875 0.99682975 0.99989419 1.28733872
[2587] 1.27097155 0.99978794 0.99999489 0.99989441 1.24788505 1.33300265
[2593] 0.99987667 1.23959060 1.16297271 1.23804496 1.10744475 1.23010088
[2599] 0.99992918 0.99994464 0.99983819 0.98324822 0.86854093 0.99982421
[2605] 0.99985073 1.25006446 0.97787201 1.27958704 1.24402982 0.92412869
[2611] 0.99871222 0.97267296 0.99985062 0.99990276 0.99989392 1.22549892
[2617] 1.24777529 0.99966367 0.99990117 1.18940905 1.24142265 0.86233597
[2623] 0.99935449 0.99999702 1.15032876 1.13815467 1.12731314 1.28673324
[2629] 1.28128962 0.98536000 0.97162334 0.99495582 0.99994249 1.23158493
[2635] 0.99948801 0.99990765 0.99993723 0.99954729 0.99991041 1.00000184
[2641] 0.99988440 1.22797993 0.99988891 1.19107791 1.21502394 0.99992136
[2647] 0.99981348 1.21241249 0.99920641 0.96928176 0.99072252 0.99948374
[2653] 0.99733608 0.99680521 0.99183649 0.97429356 0.99929347 0.99104560
[2659] 0.99009735 0.30856040 1.00029668 0.99954804 0.99959546 1.00098453
[2665] 0.99985665 0.99808636 0.98326128 0.96441065 1.00035065 1.00008453
[2671] 0.99973210 1.03155597 0.99982724 1.00580804 1.00035030 0.99983075
[2677] 0.98013381 0.99682222 1.00023797 1.00730313 0.99332347 1.01005666
[2683] 0.98148623 0.99768659 0.98683135 0.99919384 1.00461568 0.98437264
[2689] 0.88373545 0.88853688 1.01409729 0.98860866 0.99517487 0.99942269
[2695] 0.99580835 0.99824672 1.01380994 0.99596543 1.00009619 0.97936817
[2701] 1.01000700 1.00094740 0.99955396 0.99395187 0.99678879 0.99620753
[2707] 0.99782740 1.00504642 0.99960651 0.99843460 1.00150967 1.04062975
[2713] 0.99661573 1.00547890 0.99962756 1.00585364 1.00007705 1.02762023
[2719] 1.00012460 1.00015966 0.87345933 0.99912783 0.99455924 1.01743895
[2725] 0.98350402 1.00187670 0.99703607 0.99667703 0.99911344 0.99596419
[2731] 0.99703168 1.00083587 0.99142049 0.99087893 0.99812854 1.00348852
[2737] 0.99979754 0.48834177 0.69789340 1.00038817 0.99763111 0.99998941
[2743] 0.98543027 0.92234026 1.00106266 1.00226133 0.99495029 1.01093237
[2749] 0.99769276 0.98252818 0.64131026 1.00010746 0.99814977 0.65383855
[2755] 0.99760372 0.99287490 0.99441960 1.00006779 0.66481425 1.09085726
[2761] 1.00043227 0.99798278 0.99884700 1.11311373 0.99862182 1.00708458
[2767] 0.99482301 0.99825551 1.00848215 0.99995810 0.98045533 0.46081704
[2773] 1.00518116 0.99889051 0.99818792 1.12536041 1.00193075 0.99889821
[2779] 0.99548667 0.87295177 1.00052948 0.99569574 0.99092921 0.99981593
[2785] 1.00067072 0.90232277 1.07169179 0.99642016 1.02217174 1.00005626
[2791] 1.01732397 0.37725057 0.99515605 1.01739441 1.00056139 1.00355364
[2797] 1.00378010 0.92767669 0.99999353 0.99725549 0.98422259 1.00048432
[2803] 0.99996332 0.99826568 0.99317975 0.99795713 1.29635135 0.99994312
[2809] 1.00881796 1.00167421 0.99007417 1.00795093 0.99012068 1.00729171
[2815] 0.06895004 0.99998234 0.98465689 0.97603622 1.00483630 0.99889232
[2821] 1.00027456 0.98789938 0.87945406 0.99246351 0.98656690 0.98993359
[2827] 0.99759095 0.99975651 0.99976172 0.99958284 1.00086629 0.99315184
[2833] 0.87805019 0.98807287 0.98230877 0.99992619 1.02842414 1.00007208
[2839] 0.98294271 1.00098206 0.99592955 0.98835382 0.33703971 0.98672127
[2845] 0.99549033 0.99987473 1.00372562 1.00196551 1.00011385 0.66492806
[2851] 0.99336547 0.99698203 0.99994182 0.91725065 1.00574083 1.00429337
[2857] 1.00009509 1.00343671 0.99368401 0.99743325 0.99232688 0.99646358
[2863] 0.93909747 0.99949396 0.99218250 0.99199676 0.99627166 0.99914990
[2869] 1.00449478 1.18279214 0.99672761 1.00804584 0.99995207 0.99888200
[2875] 0.99789766 1.00183589 0.99354845 0.99982158 1.00014566 0.94373468
[2881] 0.97824706 1.00057648 0.99838395 1.00023673 0.98839764 1.00294273
[2887] 0.98850678 0.99396585 1.00130173 0.99523580 0.99981716 0.98591510
[2893] 1.00190170 1.01569117 0.99915394 1.00179974 0.99345307 0.99837374
[2899] 0.99288219 0.99998313 1.00230297 1.01718869 0.98970813 0.99096490
[2905] 0.99789853 0.97675057 1.00466894 1.00584078 0.99993312 1.00111752
[2911] 0.91882053 0.90310409 0.90052245 1.00037151 0.99565035 1.00018573
[2917] 1.00440965 0.99790538 1.11698623 0.99721505 1.03857131 1.00003709
[2923] 0.99526899 0.88573789 0.80094708 0.99999187 0.98466676 1.00020077
[2929] 1.00060058 0.99997275 1.00293902 0.99791190 0.99935149 1.00093776
[2935] 0.94395518 1.00039385 1.00059700 1.00022449 0.99998868 1.00076781
[2941] 1.00142212 1.00067596 1.00012082 1.00905956 0.99406427 1.00461613
[2947] 0.99388961 0.99465532 1.01449456 1.01551151 0.94848873 0.99979188
[2953] 1.00138035 1.00004869 1.00907718 0.99601390 0.99998802 1.37962225
[2959] 1.31264380 1.01522485 0.59086084 1.00043023 0.99434553 0.62162826
[2965] 1.10092301 0.98407470 1.01450465 0.99254595 1.00516363 0.96476068
[2971] 1.00002502 1.02832811 0.94437331 1.05090491 0.99549830 0.63520441
[2977] 1.00011157 1.00594153 1.01412924 1.00281110 0.99992578 0.87259677
[2983] 0.99177235 1.02729232 1.00178579 1.00096373 1.00007946 1.00718467
[2989] 0.96990098 1.29958616 1.00481549 0.99303724 1.00002806 0.99701789
[2995] 0.96962483 1.00225789 0.99729485 0.99435552 1.00007276 0.99770896
[3001] 0.98853037 1.00166231 1.00106153 1.00378428 1.10282473 1.00216183
[3007] 1.00946006 0.98183668 0.99890563 1.00046671 0.99513872 0.99952851
[3013] 1.00122575 1.00080298 1.02231967 0.44925781 0.87859571 1.00000106
[3019] 0.87284350 1.00007221 0.98740252 0.97333338 0.93071260 0.99716508
[3025] 1.00022837 1.00014332 0.99943634 0.99068674 0.99969693 0.99767709
[3031] 1.00137428 0.99874284 1.00202448 0.99996342 1.00098636 1.00098721
[3037] 1.00422762 0.97198781 0.99416248 1.00078889 0.99999390 0.97380096
[3043] 1.00104586 0.90048819 0.99999133 0.99908054 1.00441675 0.99684143
[3049] 1.05995499 0.99957982 1.26385066 0.99455108 1.00361424 1.01930620
[3055] 1.01068812 0.99681698 1.13675173 0.99466407 0.99773650 0.99735671
[3061] 0.99740272 0.99923649 1.00474046 0.99082780 0.88259747 0.99965035
[3067] 1.00081266 0.99236909 1.00350171 0.99994844 0.99661645 0.34244395
[3073] 0.99419684 0.99682983 1.00004274 1.00002735 0.99980583 1.00006159
[3079] 0.99675867 0.99717918 0.99892278 0.99777818 0.99820934 1.00016522
[3085] 0.99941351 0.99514513 0.98889891 1.00037404 0.99996819 0.99965792
[3091] 0.99999358 1.00083601 0.99835228 1.25690693 0.99487514 0.99986199
[3097] 0.98712912 1.06564998 0.40446477 1.00004659 1.00764479 0.97506058
[3103] 0.99190223 0.99590951 0.99256924 0.99991161 0.13802621 0.99996171
[3109] 0.99508658 1.00310498 0.99943482 0.99031785 0.93971088 0.99833004
[3115] 1.00052236 0.99716771 0.98135615 1.40052788 0.99809189 0.99342496
[3121] 0.99219865 1.00001697 0.98966820 1.00183726 0.99221479 0.99640170
[3127] 1.00570454 1.00104956 1.00005337 1.00204515 1.00001529 1.00172480
[3133] 0.98344339 1.00010789 1.02101822 1.00387833 1.00717340 1.00053777
[3139] 0.94434456 0.99717518 0.94008474 0.98969836 1.00958525 1.00476032
[3145] 0.99976654 0.98155333 0.99634878 1.09309511 0.99996708 0.99410029
[3151] 1.00612845 1.00009607 0.97536819 0.99708581 1.01863644 1.00001876
[3157] 1.26846049 1.06146622 0.99645705 1.00089326 1.00001177 1.00115219
[3163] 1.00031537 0.99596784 0.98650097 0.99637666 0.99417526 0.99957084
[3169] 1.01028455 0.23550214 0.98256849 0.92715575 1.01680471 0.98611821
[3175] 1.02413576 1.00016805 1.13523578 0.99969849 0.99279668 0.99817008
[3181] 0.98567755 0.27217424 0.99995829 1.00558368 1.09135017 0.99915771
[3187] 0.99915874 1.00000836 1.02367907 0.99481222 1.00010658 0.92177793
[3193] 1.10558670 0.99728371 1.00008856 1.00449241 0.87726038 0.99808659
[3199] 1.01211336 0.49729298 1.00226895 1.00009282 0.95434098 0.99471988
[3205] 1.00514273 0.99861552 1.17235840 0.96447682 1.00056815 1.00271504
[3211] 0.99859110 0.99977530 1.00234590 0.99744740 1.26490160 1.00492799
[3217] 1.01472263 0.99660638 1.00005293 0.98712962 0.99820664 0.91783107
[3223] 0.99999051 1.00055047 0.99985703 1.37419622 0.99724141 1.00233555
[3229] 1.90523846 1.00904680 0.99154304 1.07703765 1.01800344 1.01259245
[3235] 0.99994588 0.97906328 1.00186911 0.99948747 1.00483580 0.62785222
[3241] 1.02558015 0.94150432 1.02435509 0.99979503 1.00119157 1.00043815
[3247] 0.98653648 0.99784797 0.99917293 0.98462105 0.89472816 0.95864056
[3253] 0.86750733 1.01103505 1.01489240 0.99995430 1.02738840 0.99759765
[3259] 1.00149978 1.06915137 1.00103727 0.99922645 0.93144953 1.00003865
[3265] 0.99647142 1.00568759 0.99289649 0.99995279 1.89408156 0.99845019
[3271] 0.99396921 0.99751920 0.99964837 0.99507651 0.97883902 0.99626237
[3277] 0.99421260 0.99931437 0.99383144 0.99031314 1.03048124 0.99452514
[3283] 1.01083990 1.00587636 0.91846839 0.99410827 0.99780838 1.00002052
[3289] 0.99999256 0.99617739 0.99493179 1.00469227 1.02344019 0.99335578
[3295] 0.99992505 0.99994040 1.01126320 0.99387959 0.99835526 0.61840299
[3301] 0.99977676 0.98350050 0.99800264 1.00573112 0.99735741 1.99990136
[3307] 0.99819083 0.99845971 0.87087786 0.99867419 0.99456072 0.99992743
[3313] 0.99993449 1.00007003 0.99252515 1.00164694 0.99681466 0.90914436
[3319] 0.99710484 0.99955540 0.98776073 1.00006763 1.00607084 0.98264209
[3325] 0.40560583 1.00866348 0.99914503 1.03832163 0.99944743 1.00298087
[3331] 0.89149152 1.00007173 0.99567031 0.98983946 0.88181900 1.02146738
[3337] 1.00006576 0.98668015 1.07311470 0.99994910 1.01706598 0.98772339
[3343] 0.99904806 0.99713092 1.00532152 0.99981954 1.00596221 0.99986128
[3349] 1.00735834 0.99981062 0.99973030 0.99982282 0.99410157 0.99774003
[3355] 0.99259389 0.99438536 1.00000823 1.26300782 1.00131134 0.92020533
[3361] 0.99819801 1.06706120 1.00009647 1.03746127 0.99476536 0.99578668
[3367] 0.99815190 1.02114323 0.99980332 0.97402060 0.87735631 1.00006033
[3373] 1.00043301 0.99931727 1.00016230 0.99490089 0.99978848 1.08128079
[3379] 0.97371058 0.96031362 0.99856321 1.00060649 1.08611577 0.99436033
[3385] 0.99532218 0.98959844 1.02485002 0.41085470 1.00036362 0.99399005
[3391] 1.00100209 1.00012679 0.99993274 0.98888307 0.83595308 1.00008611
[3397] 0.97396920 0.99625970 0.99751807 0.99930805 1.09098351 1.00009263
[3403] 0.99888577 0.99110422 1.00095899 1.00476656 1.00009668 0.96472897
[3409] 0.65367135 1.00102425 0.78855331 1.00339397 0.99983929 1.00432536
[3415] 0.99992527 0.99943642 1.00214875 0.97997627 0.99369382 0.98940909
[3421] 0.99969273 0.97045788 0.99209740 1.00012965 1.16748241 1.02061677
[3427] 0.99987954 1.01958399 1.00814356 0.91040650 0.99746357 1.12164171
[3433] 1.00057414 0.99591379 1.00052618 1.05648555 1.00614728 0.99297444
[3439] 0.99993433 1.00092610 0.98791941 1.18444297 0.99972088 0.99965237
[3445] 1.01501552 0.99219919 0.99996308 0.99960841 0.83184285 1.02452650
[3451] 0.99779107 0.99341924 1.00327597 0.99922339 0.99226338 0.99828753
[3457] 1.00569319 1.23448296 1.00007395 1.00010598 1.08321657 0.99839611
[3463] 1.11560074 1.00047421 0.99722483 1.00668231 0.99978179 0.99758921
[3469] 0.97856513 1.12852437 0.99972556 1.03292952 0.96290709 0.59482710
[3475] 0.86904324 0.99971026 0.99954988 0.99502574 1.14526302 0.99526822
[3481] 1.00007323 1.08128795 1.00074515 0.96688906 0.99991412 1.00012406
[3487] 1.00004107 0.99994731 1.08320786 1.00114486 0.99734573 1.00009844
[3493] 0.99965079 1.00008379 0.99994029 0.99990560 0.96448189 1.00221123
[3499] 0.98474763 1.06752508 0.39793635 0.99953337 1.00554568 0.99996589
[3505] 1.00078909 0.93258860 1.00506340 1.00714591 0.99512638 1.00196990
[3511] 0.99646730 0.99996044 1.11143482 0.99828438 0.97614524 1.00081398
[3517] 0.99956690 0.97568722 1.00518179 0.99681473 1.00020275 0.99696807
[3523] 1.00000129 0.99998382 1.00006247 0.99926113 1.09389148 0.98467792
[3529] 0.90461013 0.99899358 1.00671493 1.00001637 1.00583499 1.06622065
[3535] 0.99999149 0.99799032 1.03262756 0.99279884 0.99956259 0.89697008
[3541] 1.00037146 0.91823238 0.99944773 1.00161298 1.00025787 1.06940713
[3547] 0.99983827 0.99962594 0.99999704 1.08198769 1.00071148 1.00985801
[3553] 1.00008605 0.99990172 1.01124923 0.99955418 0.99744600 0.99999387
[3559] 1.03426519 1.02538210 1.00000192 0.99998582 1.00086101 0.98367164
[3565] 0.99921085 0.99613540 0.99982583 0.99457195 0.99942832 0.99115412
[3571] 0.92695041 0.99707520 0.99654882 1.00005000 0.99774374 0.99946072
[3577] 1.00001686 0.85614410 1.02573877 1.00015093 1.08354878 1.00003682
[3583] 0.99991179 1.00309378 0.99830110 0.99777972 1.00019758 0.80323084
[3589] 1.00380819 0.94409251 1.00722378 1.00147002 1.02849611 0.99911699
[3595] 0.99975877 1.00332079 0.99679154 0.99999526 0.99838456 0.83649292
[3601] 1.00173114 1.00202941 0.99993105 1.00246260 1.00011872 0.99414408
[3607] 0.75247920 0.99998536 0.99491673 0.93023837 0.99768869 1.00021796
[3613] 1.00017997 0.98125651 1.00672596 1.00858989 0.93133468 0.99984785
[3619] 0.99889722 1.04234956 1.00009565 1.00020389 1.00012230 0.99875387
[3625] 0.99522737 0.99571773 0.83969769 1.00221949 0.99986850 0.99212097
[3631] 1.05349212 0.99998955 0.83243504 1.00004597 1.00231845 1.00050297
[3637] 1.00112515 0.99997440 0.99975333 1.00253975 0.62713550 1.00079610
[3643] 0.99484503 1.00005509 1.00167018 1.00042471 1.00551461 0.99987096
[3649] 0.99964255 0.99682483 1.00003503 1.00009430 1.00147473 1.04385288
[3655] 0.99213145 0.99997682 0.95761935 0.99665999 0.99753936 1.00288303
[3661] 0.99248944 1.00145725 1.19837582 0.99955298 0.99813189 1.00008991
[3667] 1.00008892 1.00009728 1.00158296 1.00009974 1.03985115 1.01287979
[3673] 0.99665766 0.99664624 0.87795746 0.99932628 0.91998008 0.93270806
[3679] 0.99926262 1.00177818 1.00035494 0.93189280 0.99970381 1.00087037
[3685] 0.70418424 0.99971304 1.00255217 0.99930844 0.99990572 0.99666300
[3691] 0.99495176 1.00270184 0.99236650 1.00223253 1.00010474 0.97381825
[3697] 0.91282585 0.62745697 1.00609474 0.98912434 1.00172078 0.95683896
[3703] 0.99888183 0.88017731 0.99997344 1.01849750 1.00996514 0.99567032
[3709] 1.00270469 0.99283925 1.00010815 0.98043714 0.99121822 1.01812190
[3715] 1.00673638 0.99999237 0.99781843 0.99738849 0.99999777 0.99670676
[3721] 1.00018392 1.00220738 1.00015421 1.00014422 0.99942427 1.75629865
[3727] 0.98656238 1.00080974 0.96288221 1.00332920 1.00233694 1.00012456
[3733] 0.64945531 0.98758751 1.00005876 0.99718058 0.98836392 1.00010083
[3739] 0.99985612 0.99886474 1.00004700 1.01048168 1.02710496 0.99979839
[3745] 1.00143649 0.99944911 1.00053044 1.00003638 0.99855750 1.00045414
[3751] 1.00007497 0.99940731 1.00208859 0.99174204 0.99993152 0.85420513
[3757] 0.99963689 0.99994912 1.00114708 0.95463273 1.00913052 0.99342630
[3763] 0.99988084 1.00000148 1.04527418 1.00019719 0.97511229 0.99964843
[3769] 1.00009972 0.99997301 0.99141158 1.00034722 1.00389354 0.90467035
[3775] 1.00425339 1.00361118 1.00000108 0.99994262 0.99789914 1.02855551
[3781] 0.61579302 0.99960375 1.00024401 1.01595022 0.99931362 0.99856077
[3787] 0.99980567 0.99609297 1.00095214 1.00038187 1.02685383 0.99943067
[3793] 0.99808867 0.99996005 0.99482052 0.99768164 1.00331344 1.00030607
[3799] 0.99938248 1.00006079 1.00325377 1.00253789 0.99959045 0.99855782
[3805] 1.03462121 0.99555326 0.99992208 0.99183416 0.99418894 0.99784082
[3811] 1.00039557 1.00014331 0.99022491 0.99804775 0.99999630 0.99804801
[3817] 0.99330875 1.00062647 0.99462058 1.02704414 0.99995421 0.99336068
[3823] 1.00008502 1.00680597 1.00015989 0.99998033 1.10230300 0.98595232
[3829] 0.99990823 0.80460987 0.99970206 0.99989094 1.00088149 0.93305459
[3835] 0.99978620 1.02831365 1.00008379 1.00000885 0.96621451 0.99986713
[3841] 0.99934520 1.02014955 1.00003008 1.00079480 1.00006044 0.99998923
[3847] 0.65014369 0.99389597 0.99786817 1.00008959 1.00008382 1.00012956
[3853] 1.00004605 1.03216657 0.61932774 1.00089568 0.99716359 0.99283559
[3859] 1.00041402 0.94006840 0.96526781 0.99688920 1.04516164 0.99665507
[3865] 0.99869388 1.00002564 1.00019658 1.01617379 0.99815326 1.01216343
[3871] 0.92703632 0.98400391 0.99977413 1.00011565 1.03889108 0.99987863
[3877] 0.99966192 0.92577717 1.14653270 0.99995369 1.00041401 0.99985828
[3883] 0.90809341 0.99996008 0.89792617 1.00003866 1.00467893 0.99990805
[3889] 0.99569361 1.00405509 0.99999328 0.99825442 0.97520398 1.00038712
[3895] 1.00192567 1.00189967 1.00020668 0.99983371 0.85521319 1.00253059
[3901] 0.99997683 1.01802546 1.00009212 1.02489124 1.00000104 0.92520882
[3907] 0.97991536 0.99690940 0.99516279 0.99611360 0.99832479 1.00199781
[3913] 0.99791886 1.00000740 0.99805018 0.99664179 1.03178101 0.99501489
[3919] 1.00008044 0.99418979 0.98810967 0.98959796 0.97887152 1.00040307
[3925] 0.81461311 0.98079172 1.00005997 0.99977549 1.00080589 0.89875649
[3931] 1.00004248 0.99994385 0.88522639 0.99188517 1.00129686 1.00006377
[3937] 0.99946831 0.98662982 0.99897864 1.00968593 1.00165298 0.99293885
[3943] 1.00060969 0.99150673 1.00576551 0.90552241 1.00006886 1.00021007
[3949] 1.00284593 1.00113030 0.98916400 0.71906744 0.93781199 1.00116499
[3955] 0.96888155 0.99677676 0.99993653 1.00035116 1.00001303 0.99942051
[3961] 1.00701509 1.00002497 1.00009894 0.99670285 1.03605033 0.99467573
[3967] 0.98488121 0.98592651 0.99783641 0.98977454 0.99983160 1.01665615
[3973] 1.00104217 0.99955669 1.01636740 0.95699850 0.99527097 0.91505742
[3979] 1.00397431 0.93807204 0.99449562 0.99898930 1.27771559 1.00178860
[3985] 1.29353743 1.00041536 1.00123783 0.99994663 1.00069199 0.99436819
[3991] 0.99543473 1.00008318 0.99992095 1.00035564 0.99998978 0.98383683
[3997] 1.00088055 0.99994632 1.04540474 0.92621145 0.99995899 1.00006891
[4003] 0.99969096 1.00000956 0.99995935 1.00078987 0.91296817 1.00005516
[4009] 0.99965587 0.99987944 1.00001142 0.99997974 0.98309101 0.99999372
[4015] 0.99600311 0.99559198 0.99607281 1.00737099 1.00124036 0.99497007
[4021] 0.99936492 1.00009716 1.00949220 1.00007602 1.00069380 1.00002698
[4027] 0.90130285 0.99829093 0.99719913 0.98920416 0.99759267 1.02873251
[4033] 0.99703540 1.00036772 0.99998711 0.99615590 0.99671418 0.99801496
[4039] 0.99857668 0.99141741 0.99859481 1.00032486 0.99933409 0.99323773
[4045] 0.99992991 0.99973793 0.92388274 0.99783941 1.00009846 1.00008219
[4051] 1.04227304 1.00577609 0.99708323 1.00107087 0.99985004 1.00015738
[4057] 1.00112373 0.91483865 1.01123192 1.00145061 1.01020902 0.99976256
[4063] 0.94202569 0.99121551 0.99171781 1.00059917 0.99996642 1.00484885
[4069] 0.97853846 1.00069236 1.00810573 0.57354283 1.00076714 1.04100100
[4075] 0.99121764 0.88170741 0.98638673 0.99998876 1.00027306 0.99990206
[4081] 0.99817247 1.27775211 1.04187115 0.98014942 1.07350226 0.99979571
[4087] 0.91646361 0.99460603 0.99634108 1.05635464 0.99598770 1.00009141
[4093] 1.01865718 0.99844571 0.99707140 1.64437368 0.99277762 1.00001239
[4099] 1.00235494 1.17501349 0.99998159 0.97598239 1.00000167 0.91493703
[4105] 0.91131790 0.99726392 1.01249846 0.99907472 1.00146884 1.00003690
[4111] 0.99983103 1.00110019 1.00006929 1.00158446 0.99945838 0.99662295
[4117] 1.05244955 0.99482075 1.00009318 1.00211336 1.11646127 0.99530754
[4123] 1.00069942 0.90288263 0.98688113 0.99250266 1.00937705 0.99197334
[4129] 1.02217274 1.00032572 1.01759917 1.00293759 1.00099837 0.99613687
[4135] 0.99576964 0.99456337 0.99857079 1.01005175 0.99967881 0.99768504
[4141] 0.96311218 0.99975237 0.99986029 0.91745897 1.00006053 0.99735525
[4147] 0.99999303 1.00686866 0.99978138 1.00511769 0.96767455 0.99982547
[4153] 1.00005767 1.00553637 0.99459077 0.39824677 1.00006329 1.00005608
[4159] 1.00011809 0.92707664 0.98515755 1.00475361 1.00097248 0.99998564
[4165] 0.98423327 1.00005645 1.00000187 1.00150741 0.87106190 0.99987505
[4171] 1.00007486 0.84115655 1.00002962 0.99701184 0.99998239 1.00040570
[4177] 0.90764079 0.99986404 1.00664691 0.84120151 0.98383153 0.99863368
[4183] 1.00065271 1.00024303 1.00005740 1.00051527 0.97910890 1.01222474
[4189] 0.98186527 1.01005369 0.96397310 0.99804939 0.99958232 0.90764767
[4195] 0.83124292 1.00010080 0.96216142 1.00003577 1.01778795 0.99683854
[4201] 0.99969492 1.00099444 1.01049019 0.99762579 1.00005744 1.00004006
[4207] 0.96548033 1.00010845 0.99999407 0.99744193 0.98508852 0.84197813
[4213] 0.99972046 0.99272629 1.00006955 0.99997800 0.99113639 1.00070823
[4219] 1.00095848 0.99008837 0.94204936 1.06322415 0.90109882 1.77950095
[4225] 0.98857984 0.99327287 0.99986569 0.99466616 0.99366483 1.00423342
[4231] 0.98512955 0.99445818 1.24156318 0.98790932 0.99743143 0.90768901
[4237] 0.73201548 1.00160885 0.99955280 1.00005707 0.99504430 0.99800311
[4243] 0.97043951 0.99916029 1.11942191 1.00127616 0.89092129 0.92525414
[4249] 0.99739516 0.99892277 0.99662023 0.94255208 0.99856294 0.99817974
[4255] 1.00015157 0.99103222 0.99996219 0.99351603 1.00001145 1.00033464
[4261] 1.02720999 0.99873011 1.00188374 0.99944243 0.99998124 0.96760724
[4267] 0.68976489 0.99578296 0.98081555 0.99928616 1.00002541 0.87988462
[4273] 1.03905792 0.98712234 1.01213731 0.99998215 0.99797067 0.99932121
[4279] 0.99998925 0.98960191 0.87008178 1.00006047 0.89019035 1.00086500
[4285] 0.71322223 0.90477897 0.99781474 1.00440539 0.98965329 1.04918865
[4291] 1.00228328 0.98244793 1.04524967 0.99714227 0.99999298 0.99834505
[4297] 1.03364134 0.86871383 0.99993057 0.99994693 1.02386430 0.95684525
[4303] 0.99470155 1.01570940 0.99994807 1.00169773 0.97743258 0.32033308
[4309] 0.99997840 1.00008099 0.99974259 0.91442856 0.99932030 0.99998919
[4315] 0.99924681 1.00575649 1.00021772 1.00085291 0.99978766 0.99851802
[4321] 1.00004648 1.00217626 0.99320441 1.00005310 1.00160294 1.04127637
[4327] 0.81444166 1.03928409 1.02930039 1.00029782 1.00499210 1.00003295
[4333] 0.97616982 0.99582227 0.99071191 1.00005212 0.99994347 1.00002847
[4339] 1.04330812 1.00270404 0.99657827 1.00254529 0.99752182 0.99980478
[4345] 0.99660089 1.00514311 0.99815160 1.03307038 1.00009096 0.50082509
[4351] 1.02026753 1.00073627 1.00017135 0.96127211 1.00005698 1.00209541
[4357] 1.30436973 1.00005274 0.99995192 0.99994070 0.99987129 0.99942318
[4363] 1.00003075 0.73604676 1.00751015 1.00388225 1.00020001 0.99681970
[4369] 0.99664719 0.98421040 0.99603035 0.99805649 1.00191340 0.99936807
[4375] 1.00080729 0.99791438 0.98380406 1.00007227 1.02693336 1.04468495
[4381] 1.00000203 0.99987543 1.00241387 0.87517710 0.99299214 1.00076863
[4387] 0.99998624 1.03336327 0.99891288 1.03807335 0.95143429 1.00021127
[4393] 0.61600068 0.96493535 0.92424645 0.99994604 1.20623311 0.98610713
[4399] 0.99998960 1.01463118 1.01460800 0.87996383 1.00509548 1.00092313
[4405] 0.99985327 0.99954950 0.99038042 0.99999193 1.27985729 1.00175242
[4411] 1.00187111 0.99992231 0.99849471 0.99763684 0.98243566 1.02296172
[4417] 0.99997296 0.99517015 1.00009016 1.00019501 0.99868809 1.00253306
[4423] 1.00007900 1.00014719 1.03898832 0.99998967 0.88230936 1.00684326
[4429] 0.54848035 1.00646286 1.01954816 0.99500436 1.00083456 1.00181706
[4435] 0.98447281 0.99835658 1.00010233 1.00026354 0.97778966 1.00040792
[4441] 0.99991901 0.98614246 1.00016258 1.00035620 1.06535598 0.98592574
[4447] 1.00049869 0.99999368 1.00005988 0.99983378 0.99987946 0.99998297
[4453] 1.00293302 1.00135214 0.99678843 0.99962964 0.99665271 0.99897155
[4459] 1.01339468 0.99998157 0.99999219 0.90853559 0.99865212 1.00015502
[4465] 0.99989271 1.00001921 1.16321678 0.99792989 1.00030251 0.99850793
[4471] 1.00011662 0.98990946 0.99989963 1.00011914 0.96453656 1.13012099
[4477] 0.99984943 1.03415247 0.99803528 1.00012394 1.00830966 0.99999108
[4483] 0.99999037 1.00007923 1.00070234 0.99795545 0.99993461 0.99815212
[4489] 0.99911401 0.99187999 0.99995238 1.00002282 1.01415942 0.99776856
[4495] 0.96577155 1.00424008 1.00061064 0.99749190 1.00000233 0.99722738
[4501] 0.92437201 1.00008327 0.87231297 1.01403996 0.99981694 1.00316232
[4507] 0.95575807 1.00011175 1.09260376 0.91805307 1.00327151 0.96961636
[4513] 0.99659266 1.00040643 0.99923239 0.99336947 1.00028430 0.85350652
[4519] 0.99918646 0.92937785 0.98628916 0.94268571 0.99968628 1.00150559
[4525] 0.99685392 1.00006031 1.01837062 0.99996269 1.00004498 1.03994774
[4531] 0.99707526 1.00060676 0.98504345 0.99986874 0.99999690 1.00134976
[4537] 1.00170649 1.00005684 0.99994786 1.00006642 1.00004694 1.00084450
[4543] 0.99978219 0.99756568 1.00000098 0.99936912 1.01519719 1.00004114
[4549] 0.97829202 0.99988309 0.99819324 1.00036944 1.04059257 0.99666505
[4555] 0.99996992 1.00002662 0.99984577 1.00063451 1.00109408 1.00109443
[4561] 0.97604974 1.01401932 1.00007965 0.69664702 1.00008107 1.00006390
[4567] 0.99271867 0.99709752 0.99599356 1.00028987 1.00034056 1.00311253
[4573] 0.98849989 0.99953377 0.95549597 0.89169355 1.00005046 0.97854679
[4579] 0.99722820 1.00052662 0.99988193 1.01058668 0.99555399 0.99991207
[4585] 0.99947626 0.96649873 1.00006436 1.00998700 0.99994715 1.00176437
[4591] 1.12214655 0.99672388 0.99999496 0.99965400 0.99803917 0.96158331
[4597] 0.99999293 1.00017977 1.00248728 0.99994074 0.99659753 1.00004227
[4603] 1.22971662 1.27419520 0.99989493 0.99968539 0.99973598 1.28714028
[4609] 0.99985053 0.99989898 0.99983292 1.19354310 1.24345644 1.21787308
[4615] 0.99992268 0.97768915 1.26737174 0.83200310 0.99949907 1.14719006
[4621] 1.21140464 1.27293847 1.22066049 0.99937463 0.99984750 0.99989850
[4627] 0.99469544 0.99989679 0.99979744 0.99983276 0.99880911 0.99993733
[4633] 1.23142412 1.22832676 1.20300360 1.21757365 0.99999851 0.99536103
[4639] 1.22626129 0.99993736 1.19486084 0.99989385 1.27356454 0.96860655
[4645] 0.99989725 0.99990551 1.24667989 0.99988535 0.97289427 0.99999889
[4651] 1.14646241 1.27760748 1.27520242 1.28630561 1.18119525 0.99996752
[4657] 0.99957140 0.99987522 0.99979258 0.99989195 0.99998621 1.26841145
[4663] 0.99989015 1.26263447 0.99989905 1.32397834 1.24676873 1.20535308
[4669] 1.00000330 0.99992445 0.83326683 1.19458435 0.99989667 1.22068051
[4675] 1.21425119 0.99989897 0.99981261 0.83443157 0.99985743 1.25149034
[4681] 1.18533787 0.99986619 0.99986781 0.99989771 1.22965715 1.27951202
[4687] 1.25202092 1.20896381 0.95466174 0.99948372 1.17340144 0.99990013
[4693] 1.24673835 1.00006145 0.99984855 0.99991260 0.99989713 0.99989637
[4699] 0.99988694 1.34312471 0.99968689 0.99995270 1.42095331 0.99990197
[4705] 1.27288326 1.26220931 1.25953067 0.99990666 1.39030023 0.99990536
[4711] 1.35015148 1.38022520 1.01705912 1.26094172 0.99987335 0.99990542
[4717] 1.26649053 1.23876585 0.99989930 0.99996963 1.25073427 1.34878986
[4723] 1.22028891 1.38301562 0.99967735 1.20028323 1.28141379 1.23954222
[4729] 0.91819834 1.21788810 0.87843842 0.99668855 1.15234144 0.99990386
[4735] 0.99989884 0.99878727 0.96980207 0.99990278 0.99989881 0.99987188
[4741] 0.99989723 1.16015396 0.83571212 1.34854295 1.32848354 0.99987752
[4747] 1.21251786 1.29173935 0.99985622 1.21400528 0.99989133 1.33012697
[4753] 1.09777279 1.16225818 1.26347769 0.99946638

Conclusion

From the plot above, we observed that the geographically weighted model performed slightly better than the general logistic regression model.